Đến nội dung

Hình ảnh

Đề phần Giải tích 2 Khoa toán KTQD

- - - - -

  • Please log in to reply
Chủ đề này có 3 trả lời

#1
Draconid

Draconid

    Binh nhất

  • Thành viên
  • 46 Bài viết
Mọi người xem có lỗi nào trong phần trình bày ko.

Hình gửi kèm

  • 385686_423916334308433_492520453_n.jpg

Bài viết đã được chỉnh sửa nội dung bởi Draconid: 01-06-2012 - 00:46

PC đã hỏng chờ mua máy mới :((

#2
Draconid

Draconid

    Binh nhất

  • Thành viên
  • 46 Bài viết
giải: Câu 1: Định nghĩa

Câu 2: Đặt
$A_{0}$ = $\left \{ x:\left | f_{x} -g_{x}\right |> 0 \right \}=\left \{ x:f_{x}\neq g_{x} \right \}$

$A_{\delta }=\left \{ x:\left | f\left ( x \right )-g\left ( x \right ) \right |\geq \delta \right \}$ $\delta > 0$
$A_{k}=\left \{ x:\left | f\left ( x \right ) -g\left ( x \right )\right |\geq k \right \}$ k$k\in N^{*}$

$B_{n}=\left \{ x:\left |f_{n} \left ( x \right )-f\left ( x \right ) \right | \geq \frac{\delta }{2}\right \}$ $n\in N^{*}$

$C_{n}=\left \{ x:\left | f_{n} \left ( x \right )-g\left ( x \right )\right |\geq \frac{\delta }{2} \right \}$, $n\in N^{*}$

Ta có các tập hợp này đều đo đc do fn,f,g đo được trên A

Ta cần chứng minh $\mu \left ( A_{0} \right )=0$

Trước hết ta chứng minh $A_{0}=\bigcup_{k=1}^{\infty }A_{k}$ (1)
Lấy $x\in A_{0}$, ta có $x\in A$ và $\left | f\left ( x \right ) -g\left ( x \right )\right |> 0$

Theo tính chất trù mật của số thực sẽ tồn tại số tự nhiên $k_{0}$ sao cho $\left | f\left ( x \right ) -g\left ( x \right )\right |> \frac{1}{k_{0}}> 0$ suy ra $x\in A_{k_{0}}$ nên $x\in \bigcup_{1}^{\infty }A_{k}$

Ngược lại, lấy $x\in \bigcup_{1}^{\infty }A_{k}$ thì tồn tại số tự nhiên $k_{0}$ sao cho $x\in A_{k_{0}}$. Suy ra $x\in A$ và $\left | f\left ( x \right )-g\left ( x \right ) \right |\geq \frac{1}{k_{0}}$ nên $\left | f\left ( x \right )-g\left ( x \right ) \right |> 0$ do đó $x\in A_{0}$


Vậy (1) được chứng minh khi đó ta có $\mu \left ( A_{0} \right )\leq \sum_{1}^{\infty }\mu \left ( A_{k} \right )$ (2)


Bây giờ ta chứng minh $A_{\delta }\subset B_{n}\bigcup C_{n}$ hay $\left ( A_{\delta } \right )^{c}\supset \left ( B_{n}\bigcup C_{n} \right )^{c}$ (3)

Thật vậy lấy $x\in \left ( B_{n} \right )^{c}\bigcup \left ( C_{n} \right )^{c}$ ta có $x\in A$ và $\left | f_{n} \left ( x \right )-f\left ( x \right )\right |< \frac{\delta }{2} và \left | f_{n}\left ( x \right )-g\left ( x \right ) \right |< \frac{\delta }{2}$


Suy ra $\left | f\left ( x \right )-g\left ( x \right ) \right |=\left | f\left ( x \right )-f_{n}\left ( x \right )+f_{n} \left ( x \right )-g\left ( x \right )\right |\leq \left | f_{n}\left ( x \right ) -f\left ( x \right )\right |+\left | f_{n}\left ( x \right ) -g\left ( x \right )\right |< \frac{\delta }{2}+\frac{\delta }{2}=\delta$ Do đó $x\in \left ( A_{\delta } \right )^{c}$ Vậy (3) được chứng minh

Khi đó:

$\mu \left ( A_{\delta } \right )\leq \mu \left ( B_{n} \right )+\mu \left ( C_{n} \right )$ (4)

Mà $\lim_{n \to \infty }\mu \left ( B_{n} \right )=0$, $\lim_{n \to \infty }\mu \left (C_{n} \right )=0$

Vì$f_{n}\overset{hkn}{\rightarrow}f, f_{n}\overset{hkn}{\rightarrow}g$ trên A, nên lấy lim hai vế của (4) ta được $\mu \left ( A_{\delta } \right )=0$, $\forall \delta > 0$


Suy ra $\mu \left ( A_{k} \right )=0$ khi $\delta =\frac{1}{k}> 0$, $\forall k\in N^{*}$
từ (2) ta có $\mu \left ( A_{0} \right )=0$ (ĐPCM) :)

Bài viết đã được chỉnh sửa nội dung bởi Draconid: 31-05-2012 - 23:37

PC đã hỏng chờ mua máy mới :((

#3
Draconid

Draconid

    Binh nhất

  • Thành viên
  • 46 Bài viết
Câu 4: a) CM d là 1 metric trên X. Ta có

$d\left ( x,y \right )=d\left ( y,x \right )$

$d\left ( x,y \right )=0$ <=> x=y

$d(x,y)=\left | \frac{2}{x} -\frac{2}{y}\right |=\left | \frac{2}{x}-\frac{2}{z}+\frac{2}{z}-\frac{2}{y} \right |\leq \left | \frac{2}{x}-\frac{2}{z} \right |+\left |\frac{2}{z} -\frac{2}{y} \right |=d\left ( x,z \right )+d\left ( z,y \right )$ vậy d là 1 metric trên X

b) Ta có $\lim_{m,n \to \infty }d\left ( x_{m},x_{n} \right )=\lim_{m,n \to \infty }\left | \frac{2}{x_{m}}-\frac{2}{x_{n}} \right |=0$ => dãy $\left \{ x_{n}=n\in N \right \}$ là 1 dãy cauchy trong không gian metric (X,d)

Giả sử $\left \{ x_{n} \right \}$ hội tụ khi đó $\lim_{n \to \infty }x_{n}=x$ và $\lim_{n \to \infty }d\left ( x_{n},x \right )=0$ => $\left | \frac{2}{x_{n}}-\frac{2}{x} \right |\rightarrow 0$ => $0=\lim_{n \to \infty }\frac{2}{x_{n}}=\frac{2}{x}$ Vô lý do $\frac{2}{x}\neq 0$ Vậy dãy $\left \{ x\left ( n \right ) \right \}$ không hội tụ nên (X,d) không là không gian đủ


Câu 5: A= $\left ( 0,1 \right )*(0,1)$ = $\left \{ \left ( x,y \right ):-1< x,y< 1 \right \}$
Ta lấy X $\left ( x_{1},y_{1} \right )$ $\in A$ , B(X,r) $\in A$
Dễ thấy $r=min\left \{ 1-\left | x \right |,1-\left | y \right | \right \}$

GọiY $\left ( x_{2},y_{2} \right )$ $\in B$ kihi đó:

$d\left ( X,Y \right )$ = $\sqrt{\left ( x_{1} -x_{2}\right )^{2}+\left ( y_{1}-y_{2} \right )^{2}}< r$ =>

$\left | x_{1}-x_{2} \right |< r$ , $\left | y_{1}-y_{2} \right |< r$


$\left | x_{1} \right |-\left | x_{2} \right |< r$, $\left | y_{1} \right |-\left | y_{2} \right |< r$


$\left | x_{1} \right |< r+\left | x_{2} \right |$ $< 1$ , $\left | y_{2} \right |< r+\left | y_{1} \right |$ $< 1$ Vậy Y $\in A$ nên mọi điểm trong A đều là điểm trong suy ra A là tập mở.
PC đã hỏng chờ mua máy mới :((

#4
Draconid

Draconid

    Binh nhất

  • Thành viên
  • 46 Bài viết
Câu 3: a) Ta có $\mu \left ( x:f\left ( x \right )=0\veebar f\left ( x \right ) =3\right )$ = $\mu \left ( x:f\left ( x \right )=0 \right )+\mu \left ( f\left ( x \right )=3 \right )$

$\mu \left ( x:f\left ( x \right )=0\veebar f\left ( x \right )$ = $\mu \left ( 0 \right )+\mu \left ( 1 \right )$ = $F\left ( 0^{+} \right )-F\left ( 0 \right )$ = 2

b) Do hàm số F ko liên tục tuyệt đối tại t=o và t=3 nên ta tách tích phân thành 5 miền như sau

$\int_{f< o}^{.}\left ( \frac{1}{2}t+1 \right )d\mu + \int_{f= 0}^{.}\left ( \frac{1}{2}f+1 \right )d\mu +\int_{0< f< 3}^{.}\left ( \frac{1}{2}t+1 \right )d\mu + \int_{f= 3}^{.}\left ( \frac{1}{2}t+1 \right )d\mu + \int_{f> 3}^{.}\left ( \frac{1}{2}t+1 \right )d\mu$ = $\int_{-\infty }^{0}\left ( \frac{1}{2}t+1 \right )d(2t) + 2 + \int_{0}^{3}\left ( \frac{1}{2}t+1 \right )d(t+2) \int_{3}^{+\infty } \left ( \frac{1}{2}t+1 \right )d(8)+ \frac{5}{2}.(8-5)$

$\int \left ( \frac{1}{2}f(t)+1 \right )d\mu$ = $\int_{-\infty }^{0}\left ( \frac{1}{2}t+1 \right)d(2t)$ $\frac{59}{4}$ = $\infty$

Vậy f(x) không khả tích Lebesgue =((

Bài viết đã được chỉnh sửa nội dung bởi Draconid: 03-06-2012 - 16:33

PC đã hỏng chờ mua máy mới :((




1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh