Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

[MO2013] Trận 1 - Phương trình, hệ phương trình, bất phương trình


  • Chủ đề bị khóa Chủ đề bị khóa
Chủ đề này có 41 trả lời

#41 perfectstrong

perfectstrong

    $LOVE(x)|_{x =\alpha}^\Omega=+\infty$

  • Quản trị
  • 4145 Bài viết
  • Giới tính:Nam
  • Sở thích:Đàn guitar, ngắm người mình yêu, học toán

Đã gửi 31-08-2012 - 21:54

Sao không thấy post đáp án chính thức nhỉ anh E.Galois?
Luôn yêu để sống, luôn sống để học toán, luôn học toán để yêu!!! :D

$$\text{LOVE}\left( x \right)|_{x = \alpha}^\Omega = + \infty $$




I'm still there everywhere.

#42 nth1235

nth1235

    Trung sĩ

  • Thành viên
  • 120 Bài viết
  • Giới tính:Nam
  • Đến từ:10A1 - THPT Thống Nhất A

Đã gửi 01-09-2012 - 16:05

Giải hệ phương trình trên tập hợp số thực :
$\begin{cases}
& \text \sqrt[8]{2.\sqrt[5]{7} - \sqrt[10]{y}} + (17 - \sqrt{37}).z^2 = 544 - 32.\sqrt{37} \\
& \text x.(9.\sqrt{1 + x^2} + 13.\sqrt{1 - x^2}) + 4\sqrt{y} = 912 \\
& \text \sqrt{(10.\sqrt{5} + 20).x.(1 - x)} + z.\sqrt[6]{8} = 10
\end{cases}$

BL :
ĐK : $0 \leq x \leq 1 ; 0 \leq y \leq 50176 (1)$
Với $0 \leq x \leq 1$, ta có :
$ x.(9.\sqrt{1 + x^2} + 13.\sqrt{1 - x^2})
= \frac{3}{2} . 3x . 2\sqrt{1 + x^2} + \frac{13}{2} . x . 2\sqrt{1 - x^2}
\leq \frac{3}{4}.[9x^2 + 4(1 + x^2)] + \frac{13}{4}.[x^2 + 4(1 - x^2)] = 16 (2)$ (Áp dụng BĐT AM - GM)
Dấu "=" xảy ra $\Leftrightarrow x = \frac{2}{\sqrt{5}} $ (thỏa $(1)$)
Mặt khác, từ $(1)$ suy ra $4.\sqrt{y} \leq 896 (3)$.
Từ $(2) , (3)$ suy ra $x.(9.\sqrt{1 + x^2} + 13.\sqrt{1 - x^2}) + 4.\sqrt{y} \leq 912$.
Mà theo đề bài, dấu bằng xảy ra nên $x = \frac{2}{\sqrt{5}} ; y = 50176$
Từ đó, thay $x = \frac{2}{\sqrt{5}} ; y = 50176$ vào hệ, suy ra $z = \sqrt{32}$
Vậy hệ có nghiệm $(x , y , z)$ duy nhất là $(\frac{2}{\sqrt{5}} ; 50176 ; \sqrt{32})$

Nhận xét : Thoạt nhìn hệ trên có vẻ khá phức tạp nhưng nếu chứng minh được bất đẳng thức $x.(9.\sqrt{1 + x^2} + 13.\sqrt{1 - x^2}) \leq 16 $ với $ 0 \leq x \leq 1$ thì bài toán trở nên đơn giản hơn.

PS : Ban tổ chức giúp em sửa Latex 1 số chỗ dấu căn hiển thị chưa rõ với. Máy nhà em ko hiểu sao sửa mãi mà không được.

OK




1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh