Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

max, min p= $a^4+b^4+c^4+12(1-a)(1-b)(1-c)$


  • Please log in to reply
Chủ đề này có 4 trả lời

#1 thaptam

thaptam

    Binh nhất

  • Thành viên
  • 22 Bài viết

Đã gửi 10-09-2012 - 07:00

Cho 3 số a,b,c thoả mãn $0 \leq a,b,c \leq 2$ và $a+b+c=3$ Tìm giá trị lớn nhất và nhỏ nhât của:

P=$a^4+b^4+c^4+12(1-a)(1-b)(1-c)$

#2 bdtilove

bdtilove

    Hạ sĩ

  • Biên tập viên
  • 91 Bài viết
  • Giới tính:Nam

Đã gửi 16-09-2012 - 17:30

Bài toán này rất thú vị!! Mình có lời giải như sau là quy về một biến dành cho bài toán này:
Trước hết là Min. Giả sử $ c \ge 1 $ nên $ 1-c \le 0 $ và sử dụng đánh giá $ a^4+b^4 \ge \frac{(a+b)^4}{8}=\frac{(3-c)^4}{8} $
Từ đó ta có đánh giá sau:
$ a^4+b^4+c^4+12(1-a)(1-b)(1-c) \ge \frac{(3-c)^4}{8}+c^4+12(1-a)(1-b)(1-c) \ge \frac{(3-c)^4}{8}+c^4+3(2-a-b)^2(1-c)= \frac{(3-c)^4}{8}+c^4+3(c-1)^2(1-c) $. Bằng việc khảo sát $ f(c.) $ với $ c \in [0,1] $ ta nhận được giá trị nhỏ nhất của hàm số là 3.
Kế đến là Max! Trong ba số $ a, b, c $ luôn có hai số cùng lớn hơn 1 hoặc cùng nhỏ hơn 1!! Giả sử đó là a và b! Từ đó ta có được bất đẳng thức sau đây $ a^4+b^4 \le (a+b-1)^4+1=(2-c)^4+1 $. Xét 2 trường hợp nhỏ là $ c \ge 1 $ và $ c \le 1 $. Nếu $ c \ge 1 $ thì $ 12(1-a)(1-b)(1-c) \le 0 $ Do đó:
$ a^4+b^4+c^4+12(1-a)(1-b)(1-c) \le (a+b-1)^4+1+c^4+12(1-a)(1-b)(1-c) \le =(2-c)^4+c^4+1 $
Khảo sát $ f(c.) $ trên [1,2] ta thu được $ Maxf(c.)=17 $. Trường hợp $ c \le 1$
Theo AM-GM và một đánh giá đơn giản ta có:
$ a^4+b^4+c^4+12(1-a)(1-b)(1-c) \le (a+b-1)^4+1+c^4+3(1-c)[2-a-b]^2 \le (2-c)^4+c^4+1+3(1-c)[3-a-b]^2= (2-c)^4+c^4+1+3(1-c)c^2 $ Khảo sát $ f(c.) $ trên [0,1] ta cũng thu được Max=17.
Với Min=3 đẳng thức xảy ra khi $ a=b=c=1 $ còn Max=17 đẳng thức xảy ra khi $ a=2, b=1, c=0 $


#3 bdtilove

bdtilove

    Hạ sĩ

  • Biên tập viên
  • 91 Bài viết
  • Giới tính:Nam

Đã gửi 16-09-2012 - 17:38

Cho 3 số a,b,c thoả mãn $0 \leq a,b,c \leq 2$ và $a+b+c=3$ Tìm giá trị lớn nhất và nhỏ nhât của:

P=$a^4+b^4+c^4+12(1-a)(1-b)(1-c)$

Nếu thi đại học thì mình nghĩ chỉ cho bậc 2 thôi!! Còn bậc 4 phức tạp và hơi nhiều tính toán!! Hy vọng bạn thích!!

#4 lehoanghiep

lehoanghiep

    Trung sĩ

  • Thành viên
  • 196 Bài viết
  • Giới tính:Nam

Đã gửi 27-11-2012 - 00:12

Lật lại bài này

Đặt $a-1=x;b-1=y;c-1=z$. Ta có $x+y+z=0$ và $x,y,z\in \left [ -1;1 \right ]$.
$P=\left ( x+1 \right )^{4}+\left ( y+1 \right )^{4}+\left ( z+1 \right )^{4}-12xyz=\sum x^{4}+4\sum x^{3}+6\sum x^{2}+4\sum x-12xyz+3=\left ( x^{4}+y^{4}+z^{4} \right )+6\left ( x^{2}+y^{2}+z^{2} \right )+3\geq 3$
Việc còn lại là tìm $max$.
Ta chứng minh BĐT phụ sau $x^{2}+y^{2}+z^{2}\leq 2$.

#5 Joker9999

Joker9999

    Thiếu úy

  • Thành viên
  • 659 Bài viết
  • Giới tính:Nữ
  • Đến từ:K46- Toán1 Chuyên Sư Phạm
  • Sở thích:Nghe nhạc, đánh đàn guitar và làm BDT

Đã gửi 27-11-2012 - 08:59

Cho 3 số a,b,c thoả mãn $0 \leq a,b,c \leq 2$ và $a+b+c=3$ Tìm giá trị lớn nhất và nhỏ nhât của:

P=$a^4+b^4+c^4+12(1-a)(1-b)(1-c)$

Đây là bài cuối của vòng 1 thì vào THPT chuyên ĐHKHTN Hà Nội năm 2009-2010 thì phải, cách giải là đặt $X=x-1,Y=y-1,Z=z-1$

<span style="font-family: trebuchet ms" ,="" helvetica,="" sans-serif'="">Nỗ lực chưa đủ để thành công.


.if i sad, i do Inequality to become happy. when i happy, i do Inequality to keep happy.




1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh