Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
* * * * * 2 Bình chọn

1.4 - Sự tương giao của các đồ thị

chuyên đề ôn thi đh

  • Please log in to reply
Chủ đề này có 22 trả lời

#21 maudon

maudon

    Lính mới

  • Thành viên
  • 5 Bài viết
  • Giới tính:Nữ
  • Đến từ:lai chau
  • Sở thích:khối AB giỏi địa lí thích nấu ăn quét dọn

Đã gửi 05-09-2014 - 14:28

em không hiểu chỗ $1+m+1\neq 0$ Ở câu 1 lấy ở đâu ra ạ và cả ở câu 2 chỗ 

9+8k>0 nữa ạ e k hiểu lấy ở đâu ra nữa


Bài viết đã được chỉnh sửa nội dung bởi maudon: 05-09-2014 - 15:29

tháithu

 


#22 thanhthanhtoan

thanhthanhtoan

    Trung sĩ

  • Thành viên
  • 165 Bài viết

Đã gửi 18-09-2014 - 21:56

Ví dụ 1.4. Cho hàm số $y = x^3 – 3mx^2 + 3(2m – 1)x$ có đồ thị là $\left ( C \right )$. Tìm $m$ để $\left ( C \right )$ cắt trục hoành tại ba điểm có hoành độ lập thành một cấp số cộng.

Phân tích:
Dễ thấy phương trình hoành độ giao điểm chắc chắn có nghiệm là $x=0$. Do đó có 2 trường hợp thỏa mãn điều kiện bài toán:
TH1: Ba hoành độ giao điểm lần lượt là $-a;0;a,(a>0)$. Trong trường hợp này hai nghiệm khác $0$ của phương trình đối nhau. Tức là tổng của chúng bằng $0$
TH2: Ba hoành độ giao điểm lần lượt là $0;a;2a,(a>0)$ hoặc $-2a,-a,0, (a>0)$. Trong trường hợp này hai nghiệm khác $0$ của phương trình có 1 nghiệm gấp đôi nghiệm kia.

Giải
Hoành độ giao điểm của $\left ( C \right )$ và trục $Ox$ là nghiệm của phương trình:
$$x^3 – 3mx^2 + 3(2m – 1)x = 0$$
$$\Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} - 3mx + 3(2m - 1) = 0 \ \ \ \ (1.4) \end{array} \right.$$.
Yêu cầu của bài toán được thỏa mãn khi và chỉ khi xảy ra 1 trong 2 trường hợp sau:
TH1 : phương trình $(1.4)$ có hai nghiệm khác 0 và hai nghiệm đó đối nhau. Điều này tương đương với:
$$\left\{ \begin{array}{l}3m = 0\\2m - 1 \neq 0\end{array} \right. \Leftrightarrow m = 0$$
TH2: phương trình $(1.4)$ có hai nghiệm phân biệt $x_1, x_­2$ khác 0 và $x_1 = 2x_2.$ Điều này tương đương với:
$$\left\{ \begin{array}{l}9{m^2} - 12(2m - 1) > 0\\2m - 1 \neq 0\\{x_1} + {x_2} = 3{x_2}\end{array} \right.$$
$$\Leftrightarrow \left\{ \begin{array}{l}9{m^2} - 12(2m - 1) > 0\\2m - 1 \neq 0\\3m = 3{x_2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}9{m^2} - 12(2m - 1) > 0\\2m - 1 \ne 0\\ - 2{m^2} + 6m - 3 = 0\end{array} \right. \Leftrightarrow m = \frac{{3 \pm \sqrt 3 }}{2}$$.
KL: $m = 0$ hoặc $m = \frac{{3 \pm \sqrt 3 }}{2}$.

 

 

Cho em hỏi chỗ $3m = 3{x_2}$ làm như thế nào mà $\Leftrightarrow - 2{m^2} + 6m - 3 = 0$ ?



#23 phan huong

phan huong

    Thượng sĩ

  • Thành viên
  • 234 Bài viết
  • Giới tính:Nữ
  • Sở thích:những điều mình thấy thú vị

Đã gửi 24-09-2014 - 21:05

Cho em hỏi chỗ $3m = 3{x_2}$ làm như thế nào mà $\Leftrightarrow - 2{m^2} + 6m - 3 = 0$ ?

cái này bạn chỉ việc thay x2 =m vào pt (1.4) thôi (do x2 là nghiệm của (1.4) ) .từ đó ta được $\Leftrightarrow - 2{m^2} + 6m - 3 = 0$


Bài viết đã được chỉnh sửa nội dung bởi phan huong: 24-09-2014 - 21:07






1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh