
Bài toán: Cho $x_1;x_2;...;x_{n} \ge 0$ có tổng bằng 2.Chứng minh rằng:
$$\sum_{k=1}^{n}\frac{1}{x_{k}^2+2} \ge \frac{3n-2}{6}$$
Đã gửi 27-09-2012 - 21:28
Đã gửi 26-11-2018 - 22:49
Bài này cũng khá khó và lạ,các bạn thử sức nhé
Bài toán: Cho $x_1;x_2;...;x_{n} \ge 0$ có tổng bằng 2.Chứng minh rằng:
$$\sum_{k=1}^{n}\frac{1}{x_{k}^2+2} \ge \frac{3n-2}{6}$$
Trước hết ta chứng minh $\frac{1}{x_1^2+2}+\frac{1}{x_2^2+2}\geqslant \frac{1}{2}+\frac{1}{(x_1+x_2)^2+2}$ (1)
(1) $\Leftrightarrow \frac{x_1^2+x_2^2+4}{x_1^2x_2^2+2(x_1^2+x_2^2)+4}-\frac{1}{2}\geqslant \frac{1}{(x_1+x_2)^2+2}\Leftrightarrow \frac{2-\frac{1}{2}x_1^2x_2^2}{x_1^2x_2^2+2(x_1^2+x_2^2)+4}\geqslant \frac{1}{x_1^2+x_2^2+2x_1x_2+2}$
$\Leftrightarrow 8x_1x_2-x_1^4x_2^2-x_1^2x_2^4-2x_1^3x_2^3-4x_1^2x_2^2\geqslant 0$
$\Leftrightarrow x_1x_2\left \{ 8-x_1x_2\left [ (x_1+x_2)^2+4 \right ] \right \}\geqslant 0$ (2)
Mà $x_1x_2\left [ (x_1+x_2)^2+4 \right ]\leqslant \left ( \frac{x_1+x_2}{2} \right )^2\left [ (x_1+x_2)^2+4 \right ]\leqslant 1^2.(2^2+4)=8$
Do đó $8-x_1x_2\left [ (x_1+x_2)^2+4 \right ]\geqslant 0$
Vậy bất đẳng thức (2) đúng $\Leftrightarrow$ bất đẳng thức (1) đúng.
Dấu bằng xảy ra khi "$x_1=x_2=1$" HOẶC "ít nhất 1 trong 2 số $x_1,x_2$ bằng $0$"
Từ (1) suy ra $\sum_{k=1}^{n}\frac{1}{x_k^2+2}\geqslant \frac{1}{2}+\frac{1}{(x_1+x_2)^2+2}+\frac{1}{x_3^2+2}+\frac{1}{x_4^2+2}+...+\frac{1}{x_n^2+2}$ (3)
Tương tự như trên, ta chứng minh được :
$\frac{1}{(x_1+x_2)^2+2}+\frac{1}{x_3^2+2}\geqslant \frac{1}{2}+\frac{1}{(x_1+x_2+x_3)^2+2}$ (4)
$\frac{1}{(x_1+x_2+x_3)^2+2}+\frac{1}{x_4^2+2}\geqslant \frac{1}{2}+\frac{1}{(x_1+x_2+x_3+x_4)^2+2}$ (5)
...............................................
...............................................
Từ (3),(4),(5),..., ta có :
$\sum_{k=1}^{n}\frac{1}{x_k^2+2}\geqslant \underbrace{\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}}_{n-1\ so\ hang}+\frac{1}{(x_1+x_2+...+x_n)^2+2}=\frac{n-1}{2}+\frac{1}{2^2+2}=\frac{3n-2}{6}$
Dấu bằng chỉ xảy ra khi trong các số $x_1,x_2,...,x_n$ "có $2$ số bằng $1$" HOẶC "có n-1 số bằng $0$"
Bài viết đã được chỉnh sửa nội dung bởi chanhquocnghiem: 27-11-2018 - 11:07
...
Ðêm nay tiễn đưa
Giây phút cuối vẫn còn tay ấm tay
Mai sẽ thấm cơn lạnh khi gió lay
Và những lúc mưa gọi thương nhớ đầy ...
Toán thi Học sinh giỏi và Olympic →
Bất đẳng thức - Cực trị →
Các bài toán và vấn đề về Bất đẳng thức →
$$\sum_{k=1}^{n}\frac{1}{n-1+x_{k}} \ge \sum_{k=1}^{n}\frac{1}{1+S-x_{k}}$$Bắt đầu bởi dark templar, 08-09-2012 ![]() |
|
![]() |
0 thành viên, 0 khách, 0 thành viên ẩn danh