Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

Tìm $GTNN$ của $A=x^{4}+y^{4}+x^{2}y^{2}-2(x^{2}+y^{2})+1$


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 Math Is Love

Math Is Love

    $\mathfrak{Forever}\ \mathfrak{Love}$

  • Thành viên
  • 620 Bài viết
  • Giới tính:Nam
  • Đến từ:K46 Toán 1 CSP và HMU K113
  • Sở thích:$$\mathfrak{Inequality}$$
    $$\mathfrak{Number Theory}$$
    $$\mathfrak{Analysis}$$

Đã gửi 03-10-2012 - 09:07

Cho $x,y>0$ thỏa mãn $(x+y)^{3}+4xy\geqslant 2$
Tìm $GTNN$ của $A=x^{4}+y^{4}+x^{2}y^{2}-2(x^{2}+y^{2})+1$

Hình đã gửi


#2 bdtilove

bdtilove

    Hạ sĩ

  • Biên tập viên
  • 91 Bài viết
  • Giới tính:Nam

Đã gửi 03-10-2012 - 14:32

Bằng vài thao tác đơn giản ta có được $ MinA=\frac{-1}{3} $. ta có thể có được giá trị này bằng nhiều cách khác nhau, nhưng tối hậu nhất vẫn là pp GVTT (Giả vờ tán tỉnh ) của tác giả nthoangcute tại đây: http://diendantoanho...0x1sqrt5x-1200/
Còn anh sẽ giải theo cách lớp 10 cho em:
Theo kết quả có được ta cần chứng minh:
$ A=x^{4}+y^{4}+x^{2}y^{2}-2(x^{2}+y^{2})+1 \ge \frac{-1}{3} $




Ta có thể chứng minh bằng pp tam thức bậc hai: (Thật ra vì bài này toàn bậc chẵn nên ta mới có suy nghĩ dùng tam thức bậc hai)
Thật vậy ta có $ Delta(x^2)=(y^2-2)^2-4(y^4-2y^2+\frac{4}{3})=-3y^4+4y^2-\frac{-4}{3} $
Lại tính delta bước nữa $ Delta(y^2)=16-16=0 $. Vậy $ -3y^4+4y^2-\frac{-4}{3} \le 0 $ nên $ f(x^2) \ge 0 $

Bài viết đã được chỉnh sửa nội dung bởi bdtilove: 03-10-2012 - 14:33





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh