Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
- - - - -

Định thức $D_{n}$


  • Please log in to reply
Chủ đề này có 5 trả lời

#1 dark templar

dark templar

    Kael-Invoker

  • Hiệp sỹ
  • 3788 Bài viết
  • Giới tính:Nam
  • Đến từ:TPHCM
  • Sở thích:Đọc fanfiction và theo dõi DOTA chuyên nghiệp

Đã gửi 09-10-2012 - 19:13

Bài toán: Tính định thức:
$$D_{n}=\begin{vmatrix}a_1+x_1 & a_2 & a_3 & a_4 & ... & a_{n-1} & a_{n}\\ -x_1& x_2 & 0 & 0 & ... & 0 & 0\\ 0& -x_2 & x_3 & 0 & ... & 0 & 0\\ ...& & & & & & \\ 0& 0& 0 & 0 & ... & -x_{n-1} & x_{n}\end{vmatrix}$$
"Do you still... believe in me ?" Sarah Kerrigan asked Jim Raynor - Starcraft II:Heart Of The Swarm.

#2 vo van duc

vo van duc

    Thiếu úy

  • Thành viên
  • 572 Bài viết
  • Giới tính:Nam
  • Đến từ:Học Sư phạm Toán, ĐH Sư phạm TP HCM

Đã gửi 11-10-2012 - 23:05

Bài toán: Tính định thức:
$$D_{n}=\begin{vmatrix}a_1+x_1 & a_2 & a_3 & a_4 & ... & a_{n-1} & a_{n}\\ -x_1& x_2 & 0 & 0 & ... & 0 & 0\\ 0& -x_2 & x_3 & 0 & ... & 0 & 0\\ ...& & & & & & \\ 0& 0& 0 & 0 & ... & -x_{n-1} & x_{n}\end{vmatrix}$$


Khai triển theo cột cuối cùng ta có biểu thức truy hồi như sau:
$D_{n}=a_{n}.x_{2}.x_{3}...x_{n}+x_{n}.D_{n-1}$
Mọi người tiếp tục nha!
Võ Văn Đức Hình đã gửi Hình đã gửi

#3 dark templar

dark templar

    Kael-Invoker

  • Hiệp sỹ
  • 3788 Bài viết
  • Giới tính:Nam
  • Đến từ:TPHCM
  • Sở thích:Đọc fanfiction và theo dõi DOTA chuyên nghiệp

Đã gửi 11-10-2012 - 23:21

Khai triển theo cột cuối cùng ta có biểu thức truy hồi như sau:
$D_{n}=a_{n}.x_{2}.x_{3}...x_{n}+x_{n}.D_{n-1}$
Mọi người tiếp tục nha!

Lời giải tuyệt quá :D Bạn có thể giải bài này theo biến đổi về tam giác trên hay dưới không ?
P/s:Nếu được bạn có thể "chỉ giáo" mình vài dạng tính đính thức kiểu này không ? Nếu có tài liệu thì quá tốt :D
"Do you still... believe in me ?" Sarah Kerrigan asked Jim Raynor - Starcraft II:Heart Of The Swarm.

#4 vo van duc

vo van duc

    Thiếu úy

  • Thành viên
  • 572 Bài viết
  • Giới tính:Nam
  • Đến từ:Học Sư phạm Toán, ĐH Sư phạm TP HCM

Đã gửi 11-10-2012 - 23:41

Bài này tôi đã thử sử dụng cách biến đổi về ma trận tam giác nhưng đã bất lực. Hi.
Định thức có nhiều lắm. Làm sao có thể phân dạng hết được. hi
http://diendantoanho...-dịnh-thức-d-n/
Võ Văn Đức Hình đã gửi Hình đã gửi

#5 lvirjir

lvirjir

    Lính mới

  • Thành viên
  • 1 Bài viết

Đã gửi 18-12-2013 - 00:14

Khai triển theo cột cuối cùng ta có biểu thức truy hồi như sau:
$D_{n}=a_{n}.x_{2}.x_{3}...x_{n}+x_{n}.D_{n-1}$
Mọi người tiếp tục nha!

Vui lòng xem lại cách giải của bạn xem có sai ở đâu hay không?



#6 YeuEm Zayta

YeuEm Zayta

    Trung sĩ

  • Thành viên
  • 121 Bài viết
  • Giới tính:Không khai báo
  • Đến từ:Đai Học Dầu Khí Việt Nam
  • Sở thích:Gym

Đã gửi 18-12-2013 - 09:51

Vui lòng xem lại cách giải của bạn xem có sai ở đâu hay không?

Chắc a @Đức nhầm:Sửa lại thành:$D_{n}=a_{n}.x_{1}.x_{3}...x_{n-1}+x_{n}.D_{n-1}$.

 

Khai triển theo cột cuối cùng ta có biểu thức truy hồi như sau:
$D_{n}=a_{n}.x_{2}.x_{3}...x_{n}+x_{n}.D_{n-1}$
Mọi người tiếp tục nha!


                                                                          OLP TOÁN SV TRÊN FACEBOOK: http://www.facebook....5/?notif_t=like  29.gif

 





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh