Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

Tính diện tích của thất giác $ABCDEFG$


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 yellow

yellow

    Sĩ quan

  • Pre-Member
  • 371 Bài viết
  • Giới tính:Nam
  • Đến từ:THCS Mỹ Châu

Đã gửi 25-10-2012 - 17:57

Trong mặt phẳng toạ độ cho hình thất giác ABCDEFG với các định có toạ độ:
$A(1;1),B\left ( 2;\frac{14}{3} \right ),C\left ( \frac{26}{5};7 \right ),D\left ( \frac{63}{6};5 \right )$ $,E\left ( 11;-\frac{11}{4} \right ),F\left ( \frac{45}{7};-3 \right ),G\left ( \frac{15}{8};-2 \right )$
Tính diện tích của hình thất giác đó (cho đơn vị trên các trục toạ độ là cm), kết quả là một phân số.

Bài viết đã được chỉnh sửa nội dung bởi yellow: 25-10-2012 - 17:58


$\large{\int_{0}^{\infty }xdx<\heartsuit}$

#2 sieucuong1998

sieucuong1998

    Binh nhất

  • Thành viên
  • 24 Bài viết
  • Giới tính:Nam
  • Đến từ:THCS Nguyễn Thị Định - Tây Hòa - Phú Yên

Đã gửi 03-01-2013 - 11:16

Trong mặt phẳng toạ độ cho hình thất giác ABCDEFG với các định có toạ độ:
$A(1;1),B\left ( 2;\frac{14}{3} \right ),C\left ( \frac{26}{5};7 \right ),D\left ( \frac{63}{6};5 \right )$ $,E\left ( 11;-\frac{11}{4} \right ),F\left ( \frac{45}{7};-3 \right ),G\left ( \frac{15}{8};-2 \right )$
Tính diện tích của hình thất giác đó (cho đơn vị trên các trục toạ độ là cm), kết quả là một phân số.

Bài này nằm trong đề thi HSGMT Huế năm 2008 của lớp 8. Trên trang BITEX đã có cách giải nhưng mà không thể hiện được dấu phân số nên chắc bạn không hiểu!?. Thôi để mình giải chi tiết cho vậy :)
Hình đã gửi
Vẽ trên mặt phẳng $Oxy$ các điểm có tọa độ sau: $H(1;7), I(11;7), J(11;-3), K(1;-3)$. Sau đó, chia phần ngoài thất giác cần tính diện tích thành các hình thang, hình tam giác rồi tính diện tích hình vuông trừ đi tổng diện tích phần ngoài của thất giác ta được diện tích $ABCDEFG$
Cụ thể ta có:
$S_{HIJK}=10.10=100\left ( cm \right )$;
$S_{ABCH}=\dfrac{\left ( 7-4\dfrac{2}{3}+6\right )}{2}+\dfrac{1}{2}\left ( 7-4\dfrac{2}{3} \right )\left ( 5\dfrac{1}{5}-2 \right )=7,9\left ( cm^{2} \right )$;
$S_{CDEI}=\dfrac{\left ( 11-10\dfrac{1}{2}+11-5\dfrac{1}{5}\right ).2}{2}+\dfrac{1}{2}\left ( 11-10\dfrac{1}{2} \right )\left ( 2\dfrac{3}{4}+5 \right )=8,2375\left ( cm^{2} \right )$;
$S_{AKFG}=\dfrac{\left ( 1\dfrac{7}{8}-1+6\dfrac{3}{7}-1\right )}{2}+\dfrac{1}{2}.3.\left ( 1\dfrac{7}{8}-1 \right )=\dfrac{125}{28}\left ( cm^{2} \right )$;
$S_{EFJ}=\dfrac{1}{2}\left ( 11-6\dfrac{3}{7} \right )\left ( 3-2\dfrac{3}{4} \right )=\dfrac{4}{7}\left ( cm^{2} \right )$
Do đó $S_{ABCDEFG}=S_{HIJK}-\left ( S_{ABCH}+S_{CDEI}+S_{AKFG}+S_{EFJ} \right )$
$=100-\left ( 7,9+8,2375+\dfrac{125}{28}+\dfrac{4}{7} \right )=\dfrac{44143}{560} \approx 78,82678571\left ( cm^{2} \right ) $
Mình nghĩ đáp án nên để dạng phân số sẽ hợp hơn. Chúc bạn học tốt!

Bài viết đã được chỉnh sửa nội dung bởi sieucuong1998: 03-01-2013 - 11:18





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh