Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
* * * * * 1 Bình chọn

Giải phương trình sau: $\sqrt{4-3\sqrt{10-3x}}=x-2$


  • Please log in to reply
Chủ đề này có 6 trả lời

#1 anhxuanfarastar

anhxuanfarastar

    Sĩ quan

  • Thành viên
  • 368 Bài viết
  • Giới tính:Nam
  • Đến từ:$\int_{-\infty }^{+\infty }vdt$

Đã gửi 27-10-2012 - 21:20

Giải phương trình sau: $\sqrt{4-3\sqrt{10-3x}}=x-2$

INTELLIGENCE IS THE ABILITY TO ADAPT TO CHANGE !!!


#2 Crystal

Crystal

    ANGRY BIRDS

  • Hiệp sỹ
  • 5534 Bài viết
  • Giới tính:Nam
  • Đến từ:Huế

Đã gửi 27-10-2012 - 21:27

Giải phương trình sau: $\sqrt{4-3\sqrt{10-3x}}=x-2$


Đây là đề thi VMO 2002. Đáp án bạn có thể tìm thấy trên Google :P

#3 vanhongha

vanhongha

    Hạ sĩ

  • Thành viên
  • 73 Bài viết
  • Giới tính:Nữ
  • Đến từ:Quốc Học Quy Nhơn

Đã gửi 28-10-2012 - 20:42

Giải phương trình sau: $\sqrt{4-3\sqrt{10-3x}}=x-2$

ĐKXĐ:
$\left\{\begin{matrix}
10-3x\geq 0\\x-2\geq 0

\end{matrix}\right.$
$\Leftrightarrow \left\{\begin{matrix}
x\leq \frac{10}{3}\\x\geq 2

\end{matrix}\right.$
Phương trình tương đương:
$\sqrt{4-3\sqrt{10-3x}}=x-2$
$\Leftrightarrow 4-3\sqrt{10-3x}=(x-2)^2$ (1)
Đặt $a-2=-\sqrt{10-3x}$ (2)
Từ (1) và (2) ta có hệ pt:

$\left\{\begin{matrix}
4-3(a-2)=(x-2)^2\\ 10-3x=(a-2)^2

\end{matrix}\right.$
$\Leftrightarrow
\left\{\begin{matrix}
10-3a=(x-2)^2\\10-3x=(a-2)^2

\end{matrix}\right.$
Giải hệ ta được nghiệm x=a suy ra x=3.

#4 NTHMyDream

NTHMyDream

    Hạ sĩ

  • Thành viên
  • 94 Bài viết
  • Giới tính:Nữ

Đã gửi 31-10-2012 - 23:04

Đặt $a-2=-\sqrt{10-3x}$ (2)

cho em hỏi tí là bằng cách nào ta nghĩ ra cách đặt như vậy ạ

#5 quoctruong1202

quoctruong1202

    Trung sĩ

  • Thành viên
  • 129 Bài viết
  • Giới tính:Nam
  • Đến từ:Tha phương

Đã gửi 01-11-2012 - 09:36

cho em hỏi tí là bằng cách nào ta nghĩ ra cách đặt như vậy ạ

Mục đích của việc đặt là ra hệ đối xứng mà bạn! Bạn cũng có thể đặt thông thường $a=\sqrt{10-3x}$.
Hình đã gửi

#6 foreverlove12a

foreverlove12a

    Lính mới

  • Thành viên
  • 3 Bài viết

Đã gửi 05-11-2012 - 11:06

đặt ra hệ đỗi xứng thì bài giải sẽ được tối ưu hóa nhất.
_______________________
binh online - chan online - choi co tuong

Bài viết đã được chỉnh sửa nội dung bởi foreverlove12a: 13-11-2012 - 09:57


#7 phucboyka7

phucboyka7

    Lính mới

  • Thành viên mới
  • 6 Bài viết

Đã gửi 26-10-2019 - 20:41

ĐKXĐ:
$\left\{\begin{matrix}
10-3x\geq 0\\x-2\geq 0

\end{matrix}\right.$
$\Leftrightarrow \left\{\begin{matrix}
x\leq \frac{10}{3}\\x\geq 2

\end{matrix}\right.$
Phương trình tương đương:
$\sqrt{4-3\sqrt{10-3x}}=x-2$
$\Leftrightarrow 4-3\sqrt{10-3x}=(x-2)^2$ (1)
Đặt $a-2=-\sqrt{10-3x}$ (2)
Từ (1) và (2) ta có hệ pt:

$\left\{\begin{matrix}
4-3(a-2)=(x-2)^2\\ 10-3x=(a-2)^2

\end{matrix}\right.$
$\Leftrightarrow
\left\{\begin{matrix}
10-3a=(x-2)^2\\10-3x=(a-2)^2

\end{matrix}\right.$
Giải hệ ta được nghiệm x=a suy ra x=3.

ĐKXĐ sai rồi, chưa xét biểu thức dưới căn to






1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh