Đến nội dung

Hình ảnh

Cho $a,b,c \neq 0$. Tìm minA biết: $A=\sum(\frac{a^2}{a^2+(b+c)^2})$


  • Please log in to reply
Chủ đề này có 2 trả lời

#1
minhson95

minhson95

    Thiếu úy

  • Thành viên
  • 520 Bài viết
Cho $a,b,c \neq 0$. Tìm minA biết:

$A=\frac{a^2}{a^2+(b+c)^2}+\frac{b^2}{b^2+(c+a)^2}+\frac{c^2}{c^2+(a+b)^2}$

Bài viết đã được chỉnh sửa nội dung bởi minhson95: 28-10-2012 - 17:31


#2
zookiiiiaa

zookiiiiaa

    Binh nhất

  • Thành viên
  • 21 Bài viết

Cho $a,b,c \neq 0$. Tìm minA biết:

$A=\frac{a^2}{a^2+(b+c)^2}+\frac{b^2}{b^2+(c+a)^2}+\frac{c^2}{c^2+(a+b)^2}$


Ta có: $(a+b)^2\le 2(a^2+b^2), (b+c)^2\le 2(b^2+c^2), (c+a)^2\le 2(c^2+a^2)$
$\Rightarrow A\geq \dfrac{a^2}{a^2+2(b^2+c^2)}+\dfrac{b^2}{b^2+2(c^2+a^2)}+\dfrac{c^2}{c^2+2(a^2+b^2)}=\dfrac{a^4}{a^4+2a^2(b^2+c^2)}+\dfrac{b^4}{b^4+2b^2(c^2+a^2)}+ \dfrac {c^4}{c^4+2c^2(a^2+b^2)}$
$\geq \dfrac{(a^2+b^2+c^2)^2}{a^4+b^4+c^4+4(a^2b^2+b^2c^2+c^2a^2)}=\dfrac{(a^2+b^2+c^2)^2}{(a^2+b^2+c^2)^2+2(a^2b^2+b^2c^2+c^2a^2)}$
Ta lại có: $a^2b^2+b^2c^2+c^2a^2\le \dfrac{(a^2+b^2+c^2)^2}{3}\Rightarrow A\geq \dfrac{3}{5}$
Vậy $MinA=\dfrac{3}{5}$ khi $a^2=b^2=c^2$.

#3
zookiiiiaa

zookiiiiaa

    Binh nhất

  • Thành viên
  • 21 Bài viết
Một cách khác:

Ta có:
$$(x-y)^2 \geq 0 \Leftrightarrow (x+y)^2 \leq 2(x^2 + y^2).$$
Từ đó ta suy ra:
$$A+3 \geq 2(a^2 + b^2 + c^2)\left(\dfrac{1}{a^2 + 2(b^2 + c^2)}+\dfrac{1}{b^2 + 2(a^2 + c^2)}+\dfrac{1}{c^2 + 2(b^2 + a^2)}\right).$$
Do ta dự đoán đẳng thức xảy ra khi $a^2=b^2=c^2$ nên mình nghĩ đến việc sử dụng bất đẳng thức quen thuộc sau:

$(x+y+z)(\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}) \geq 9$ ( ta có thể dùng AM-GM để chứng mình bđt này dễ dàng. :D)

Vì thế mình nhân cả 2 vế bđt vừa "suy ra" cho $\dfrac{5}{2}$ thì được:
$$(A+3)\dfrac{5}{2} \geq 9 \Leftrightarrow A \geq \dfrac{3}{5}$$
Giá trị nhỏ nhất của A là $\dfrac{3}{5}$ đạt được khi $a^2 =b^2 = c^2$.
Vậy bài toán đã giải quyết xong.




1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh