Đến nội dung


Chú ý

Do trục trặc kĩ thuật nên diễn đàn đã không truy cập được trong ít ngày vừa qua, mong các bạn thông cảm.

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
* * * * - 19 Bình chọn

Topic về Phương trình và hệ phương trình không mẫu mực


  • Please log in to reply
Chủ đề này có 145 trả lời

#1 Khanh 6c Hoang Liet

Khanh 6c Hoang Liet

    Trung sĩ

  • Thành viên
  • 188 Bài viết
  • Giới tính:Nam
  • Đến từ:$\mathfrak{THCS Hoàng Liệt}$

Đã gửi 19-11-2012 - 20:53

Bài 1 : Giải phương trình :
$\sqrt{x^2 + 10x + 21} = 3\sqrt{x + 3} + 2\sqrt{x + 7} - 6$
Bài 2 : Giải phương trình :
$3^{x + 1} + 2x.3^{x} - 18x - 27 = 0$
Bài 3 : Giải phương trình :
$\left ( a^2 -3x + 2 \right )^3 = x^6 - \left ( 3x - 2 \right )^{3}$
Hình đã gửi

#2 tramyvodoi

tramyvodoi

    Thượng úy

  • Thành viên
  • 1044 Bài viết
  • Giới tính:Nam
  • Đến từ:Hồ Chí Minh
  • Sở thích:dota, học toán

Đã gửi 19-11-2012 - 21:18

mình xin giải bài 1:
đặt $\sqrt{x+3}=a, \sqrt{x+7}=b$
ta được hệ sau:
$\left\{\begin{matrix} ab=3a+2b-6 & \\ b^{2}-a^{2}=5 & \end{matrix}\right.$
hệ này nhiều cách giải lắm

#3 tramyvodoi

tramyvodoi

    Thượng úy

  • Thành viên
  • 1044 Bài viết
  • Giới tính:Nam
  • Đến từ:Hồ Chí Minh
  • Sở thích:dota, học toán

Đã gửi 19-11-2012 - 21:21

mình xin giải bài 2 như sau:
phương trình ban đầu tương đương:
            $3.3^{x}+2x.3^{x}-18x-27=0$

<=>      $3^{x}\left ( 3+2x \right )-9\left ( 3+2x \right )=0$

<=>     $\left ( 3^{x}-9 \right )\left ( 3+2x \right )=0$
tới đây dễ rồi


Bài viết đã được chỉnh sửa nội dung bởi kimchitwinkle: 19-07-2015 - 00:18


#4 tramyvodoi

tramyvodoi

    Thượng úy

  • Thành viên
  • 1044 Bài viết
  • Giới tính:Nam
  • Đến từ:Hồ Chí Minh
  • Sở thích:dota, học toán

Đã gửi 19-11-2012 - 21:25

đặt x2=a,3x-2=b
thì phương trình ban đầu trở thành
(a-b)3=a3-b3
<=>-3ab(a+b)=0

#5 tramyvodoi

tramyvodoi

    Thượng úy

  • Thành viên
  • 1044 Bài viết
  • Giới tính:Nam
  • Đến từ:Hồ Chí Minh
  • Sở thích:dota, học toán

Đã gửi 20-11-2012 - 11:19

mình xin giải bài 1:
đặt $\sqrt{x+3}=a, \sqrt{x+7}=b$
ta được hệ sau:
$\left\{\begin{matrix} ab=3a+2b-6 & \\ b^{2}-a^{2}=5 & \end{matrix}\right.$
hệ này nhiều cách giải lắm

Mình sẽ giải lại cho bạn hiểu nhé !

Bài 1 : Giải phương trình :
$\sqrt{x^2 + 10x + 21} = 3\sqrt{x + 3} + 2\sqrt{x + 7} - 6$
Bài 2 : Giải phương trình :
$3^{x + 1} + 2x.3^{x} - 18x - 27 = 0$
Bài 3 : Giải phương trình :
$\left ( a^2 -3x + 2 \right )^3 = x^6 - \left ( 3x - 2 \right )^{3}$

Bài 1 :
$\Leftrightarrow \sqrt{\left ( x + 3 \right )\left ( x + 7 \right )} - 3\sqrt{x + 3} - 2\sqrt{x + 7} + 6 =0$
$\Leftrightarrow \sqrt{x + 3}\left ( \sqrt{x + 7} - 3 \right ) - 2\left ( \sqrt{x + 7 } - 3 \right ) = 0$
$\Leftrightarrow \left ( \sqrt{x + 7 } - 3 \right )\left ( \sqrt{x + 3} - 2 \right ) = 0$
$\Leftrightarrow \left\{\begin{matrix} \sqrt{x + 7} - 3 = 0\\\sqrt{x + 3} - 2 = 0 \end{matrix}\right.$
$\Leftrightarrow \left\{\begin{matrix} x + 7 = 9\\ x + 3 = 1 \end{matrix}\right.$
$\Leftrightarrow x = 1 ; 2$

#6 tramyvodoi

tramyvodoi

    Thượng úy

  • Thành viên
  • 1044 Bài viết
  • Giới tính:Nam
  • Đến từ:Hồ Chí Minh
  • Sở thích:dota, học toán

Đã gửi 20-11-2012 - 12:37

Bài 1 : Giải phương trình :
$\sqrt{x^2 + 10x + 21} = 3\sqrt{x + 3} + 2\sqrt{x + 7} - 6$
Bài 2 : Giải phương trình :
$3^{x + 1} + 2x.3^{x} - 18x - 27 = 0$
Bài 3 : Giải phương trình :
$\left ( a^2 -3x + 2 \right )^3 = x^6 - \left ( 3x - 2 \right )^{3}$

Bài 2 mình xin giải lại :
$\Leftrightarrow 3^x\left ( 3 + 2x \right ) - 9\left ( 2x + 3 \right ) =0$
$\Leftrightarrow \left ( 2x + 3 \right )\left ( 3^x - 9 \right ) = 0$
Nhường bạn giải nốt.

#7 tramyvodoi

tramyvodoi

    Thượng úy

  • Thành viên
  • 1044 Bài viết
  • Giới tính:Nam
  • Đến từ:Hồ Chí Minh
  • Sở thích:dota, học toán

Đã gửi 20-11-2012 - 16:01

Góp thêm một bài :
Giải PT :
$\sqrt[3]{1 - x} + \sqrt{x + 2} = 1$

#8 minhdat881439

minhdat881439

    Sĩ quan

  • Thành viên
  • 473 Bài viết
  • Giới tính:Không khai báo
  • Đến từ:Huế

Đã gửi 20-11-2012 - 16:38

Góp thêm một bài :
Giải PT :
$\sqrt[3]{1 - x} + \sqrt{x + 2} = 1$

Đặt $\left\{\begin{matrix} \sqrt[3]{1-x}=a & \\ \sqrt{x+2}=b; b\geq 0 & \end{matrix}\right.$
$\Rightarrow \left\{\begin{matrix} 1-x=a^3 & \\ x+2=b^2 & \end{matrix}\right.$
$\Rightarrow a^3+b^2=3$
Ta được hệ phương trình:
$\left\{\begin{matrix} a+b=1 & \\ a^3+b^2=3 & \end{matrix}\right.$
$\Leftrightarrow \left\{\begin{matrix} b=1-a & \\ a^3+a^2-2a-2=0 & \end{matrix}\right.$
$\Leftrightarrow \left\{\begin{matrix} b=1-a & \\ (a+1)(a^2-2)=0 & \end{matrix}\right.$
Tới đây dễ rồi

Đừng ngại học hỏi. Kiến thức là vô bờ, là một kho báu mà ta luôn có thể mang theo dể dàng


Trần Minh Đạt tự hào là thành viên VMF


#9 Khanh 6c Hoang Liet

Khanh 6c Hoang Liet

    Trung sĩ

  • Thành viên
  • 188 Bài viết
  • Giới tính:Nam
  • Đến từ:$\mathfrak{THCS Hoàng Liệt}$

Đã gửi 25-11-2012 - 17:06

Giải phương trình $x^3 + 1 = 2\sqrt[3]{2x - 1}$.
Hình đã gửi

#10 tramyvodoi

tramyvodoi

    Thượng úy

  • Thành viên
  • 1044 Bài viết
  • Giới tính:Nam
  • Đến từ:Hồ Chí Minh
  • Sở thích:dota, học toán

Đã gửi 25-11-2012 - 17:16

Giải phương trình $x^3 + 1 = 2\sqrt[3]{2x - 1}$.

Đặt $t = \sqrt[3]{2x - 1} \Rightarrow 2x - 1 = t^3$
Ta có hệ : $\left\{\begin{matrix} x^3 + 1 = 2t\\2x - 1 = t^3 \end{matrix}\right.$
$\Rightarrow x^3 - t^3 + 2\left ( x - t \right ) = 0$
Từ đây ta tìm ra nghiệm của phương trình là $1$ $;$ $\frac{-1 + \sqrt{5}}{2}$ $;$ $\frac{-1 - \sqrt{5}}{2}$

#11 tramyvodoi

tramyvodoi

    Thượng úy

  • Thành viên
  • 1044 Bài viết
  • Giới tính:Nam
  • Đến từ:Hồ Chí Minh
  • Sở thích:dota, học toán

Đã gửi 26-11-2012 - 18:06

Giải phương trình : $\sqrt[3]{\frac{1}{2} + x} + \sqrt{\frac{1}{2} - x} = 1$

#12 no matter what

no matter what

    Why not me

  • Thành viên
  • 397 Bài viết
  • Giới tính:Nam

Đã gửi 26-11-2012 - 18:21

Giải phương trình : $\sqrt[3]{\frac{1}{2} + x} + \sqrt{\frac{1}{2} - x} = 1$

Chỉ cần đặt $\sqrt[3]{\frac{1}{2}+x}=a,\sqrt{\frac{1}{2}-x}=b$
Ta sẽ có cái hệ như sau
$\left\{\begin{matrix} a+b=1 & & \\ a^3+b^2=1 & & \end{matrix}\right.$
Đến đây,mọi việc đều có thể thương lượng :icon6:

#13 tramyvodoi

tramyvodoi

    Thượng úy

  • Thành viên
  • 1044 Bài viết
  • Giới tính:Nam
  • Đến từ:Hồ Chí Minh
  • Sở thích:dota, học toán

Đã gửi 27-11-2012 - 22:16

Tìm nghiệm nguyên tố của phương trình :
$x^2 - 2y^2 = 1$

#14 tramyvodoi

tramyvodoi

    Thượng úy

  • Thành viên
  • 1044 Bài viết
  • Giới tính:Nam
  • Đến từ:Hồ Chí Minh
  • Sở thích:dota, học toán

Đã gửi 30-11-2012 - 21:41

Mình xin giải bằng phương pháp kẹp!
Ta có: $x^{2}=1+2y^{2}$
+)Với y>2, y<0 ta có
$\left ( y+1 \right )^{2}<1+2y^{2}<\left ( y+2 \right )^{2}$
$\Rightarrow \left ( y+1 \right )^{2}< x^{2}<\left ( y+2 \right )^{2}$
Vì $\left ( y+1 \right )^{2}$ và$\left ( y+2 \right )^{2}$ là 2 số chính phương liên tiếp nên không tồn tại $x^{2}$ sao cho \left ( y+1 \right )^{2}< x^{2}<\left ( y+2 \right )^{2}$
Nên y>2, y<0 không thỏa mãn
+)Với $0\leq y\leq 2$ ta có y là số nguyên tố khi y=2
Với y=2 thay vào phương trình tìm được x=3(thỏa mãn)
Vậy pt có 1 nghiệm nguyên tố (x;y) là(3;2)

Bạn ơi, sửa $\LaTeX$ ngay nhé ! :)
_______________________________________________________
Bài toán tiếp theo :
Giải PT :
$\begin{cases} y^3 + x{y^2} + 3x - 6y = 0\\ x^2 + xy = 3\end{cases}$

#15 ckuoj1

ckuoj1

    Trung sĩ

  • Thành viên
  • 177 Bài viết
  • Giới tính:Nữ
  • Đến từ:Hà Tĩnh

Đã gửi 01-12-2012 - 00:48

Bạn ơi, sửa $\LaTeX$ ngay nhé ! :)
_______________________________________________________
Bài toán tiếp theo :
Giải PT :
$\begin{cases} y^3 + x{y^2} + 3x - 6y = 0\\ x^2 + xy = 3\end{cases}$

Mình xử bài này vậy ^^
Từ (2) có $x(x+y)=3\Rightarrow (x+y)=\frac{3}{x}$
Thay vào (1) có $y^{2}.\frac{3}{x}=3(x-2y)$
$\Rightarrow (x-y)^{2}=0\Rightarrow x=y$
$\Rightarrow x=y=\sqrt{\frac{3}{2}}$ và$\Rightarrow x=y=-\sqrt{\frac{3}{2}}$ ^^
Những người thông minh là những người biết bị thần kinh đúng lúc ^^

#16 Khanh 6c Hoang Liet

Khanh 6c Hoang Liet

    Trung sĩ

  • Thành viên
  • 188 Bài viết
  • Giới tính:Nam
  • Đến từ:$\mathfrak{THCS Hoàng Liệt}$

Đã gửi 24-12-2012 - 18:10

Giải phương trình :
$\sqrt[3]{\left ( 3x + 1 \right )^{2}} + \sqrt[3]{\left ( 3x - 1 \right )^{2}} + \sqrt{9x^{2} - 1} = 1$
Hình đã gửi

#17 tramyvodoi

tramyvodoi

    Thượng úy

  • Thành viên
  • 1044 Bài viết
  • Giới tính:Nam
  • Đến từ:Hồ Chí Minh
  • Sở thích:dota, học toán

Đã gửi 24-12-2012 - 19:59

Giải phương trình :
$\sqrt[3]{\left ( 3x + 1 \right )^{2}} + \sqrt[3]{\left ( 3x - 1 \right )^{2}} + \sqrt{9x^{2} - 1} = 1$

Đặt $u = \sqrt[3]{3x + 1}$ $;$ $v = \sqrt[3]{3x - 1}$ thì phương trình : $\sqrt[3]{\left ( 3x + 1 \right )^{2}} + \sqrt[3]{\left ( 3x - 1 \right )^{2}} + \sqrt{9x^{2} - 1} = 1$ trở thành :
$\left\{\begin{matrix} u^{2} + v^{2} + uv = 1\\u^{3} - v^{3} = 2 \end{matrix}\right.$.
$\Rightarrow u - v = 2 \Rightarrow u = v + 2$.
Do đó : $\left ( v + 2 \right )^{2} + v^{2} + v\left ( v + 2 \right ) = 1$
______$\Leftrightarrow 3v^{2} + 6v + 3 = 0$
______$\Leftrightarrow 3\left (v + 1 \right )^{2} = 0$
______$\Leftrightarrow v = -1 \Rightarrow u = 1$
Vậy ta có : $\left\{\begin{matrix} \sqrt[3]{3x + 1} = 1\\\sqrt[3]{3x - 1} = -1 \end{matrix}\right.$ $\Rightarrow$ $x = 0$.
Vậy nghiệm của phương trình là $0$.

Bài viết đã được chỉnh sửa nội dung bởi tramyvodoi: 24-12-2012 - 19:59


#18 tramyvodoi

tramyvodoi

    Thượng úy

  • Thành viên
  • 1044 Bài viết
  • Giới tính:Nam
  • Đến từ:Hồ Chí Minh
  • Sở thích:dota, học toán

Đã gửi 13-01-2013 - 21:50

Giải phương trình :
$\text{(x - 1)(x - 2)(x + 3)(x + 4) = 14}$.

#19 Oral1020

Oral1020

    Thịnh To Tướng

  • Thành viên
  • 1225 Bài viết
  • Giới tính:Nam
  • Đến từ:My house

Đã gửi 13-01-2013 - 22:01

Giải phương trình :
$\text{(x - 1)(x - 2)(x + 3)(x + 4) = 14}$.

Phương trình tương đương với:
$(x^2+2x-3)(x^2+2x-8)=14$
Đặt $t=x^2+2x-5$,ta có:
$(t+2)(t-3)=14$
$\Longleftrightarrow t^2-t-20=0$
$\Longleftrightarrow t=5;-4$
Tới đây dễ dàng tìm được $x$
$\Longleftrightarrow
\left\{\begin{matrix}
x^2+2x-5=5\\x^2+2x-5=-4

\end{matrix}\right.$
$\Longleftrightarrow
\left\{\begin{matrix}
-1+\sqrt{11} \\-1-\sqrt{11}
\\ -1+\sqrt{2}
\\ -1-\sqrt{2}

\end{matrix}\right.$

Bài viết đã được chỉnh sửa nội dung bởi Oral1020: 13-01-2013 - 22:06

"If I feel unhappy,I do mathematics to become happy.


If I feel happy,I do mathematics to keep happy."

Alfréd Rényi

Hình đã gửi


#20 N H Tu prince

N H Tu prince

    Sĩ quan

  • Thành viên
  • 388 Bài viết
  • Giới tính:Nam
  • Đến từ:Di Linh

Đã gửi 13-01-2013 - 22:04

Giải phương trình :
$\text{(x - 1)(x - 2)(x + 3)(x + 4) = 14}$.

$PT<=>(x^2+2x-3)(x^2+2x-8)=14<=>(x^2+2x-5,5)^2=14+(2,5)^2=(\frac{9}{2})^2$

Link

 





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh