Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

cho a,b,c >0 thoả mãn:a+b+c=3.CMR: $\sum a^{2}+\frac{ab+bc+ac}{a^{2}b+b^{2}c+c^{2}a}\geq 4$


  • Please log in to reply
Chủ đề này có 2 trả lời

#1 b2stfs

b2stfs

    Trung sĩ

  • Thành viên
  • 126 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT Trần Hưng Đạo.Tiên Lữ, Hưng yên

Đã gửi 19-11-2012 - 21:18

cho a,b,c >0 thoả mãn:a+b+c=3.CMR:
$\sum a^{2}+\frac{ab+bc+ac}{a^{2}b+b^{2}c+c^{2}a}\geq 4$

------CÁT BỤI VẪN MÃI LÀ CÁT BỤI------


#2 Nguyễn Hữu Huy

Nguyễn Hữu Huy

    Trung sĩ

  • Thành viên
  • 104 Bài viết
  • Giới tính:Nam
  • Đến từ:Trường THPT Cờ Đỏ
  • Sở thích:no

Đã gửi 19-11-2012 - 22:05

cho a,b,c >0 thoả mãn:a+b+c=3.CMR:
$\sum a^{2}+\frac{ab+bc+ac}{a^{2}b+b^{2}c+c^{2}a}\geq 4$


BĐT tương đương với
$(a)^2-2\sum{ab}+\dfrac{3\sum{ab}}{(\sum{a})(\sum{a^2b})}\geq 9-2\sum{ab})+\dfrac{3\sum{ab}}{3\sum{a^2}}= 9-2q+\dfrac{q}{9-2q}$

Cần chứng minh $9 - 2q +\dfrac{q}{9-2q} \geq 4 \Leftrightarrow (q-3,75)(q-3)\geq 0$ (đúng vì $q \leq 3$)

P . I = A . 22


#3 Joker9999

Joker9999

    Thiếu úy

  • Thành viên
  • 659 Bài viết
  • Giới tính:Nữ
  • Đến từ:K46- Toán1 Chuyên Sư Phạm
  • Sở thích:Nghe nhạc, đánh đàn guitar và làm BDT

Đã gửi 20-11-2012 - 14:14

cho a,b,c >0 thoả mãn:a+b+c=3.CMR:
$\sum a^{2}+\frac{ab+bc+ac}{a^{2}b+b^{2}c+c^{2}a}\geq 4$

Sử dụng bổ đề quen thuộc: Với a+b+c=3 thì $(a^2b+b^2c+c^2a)(ab+ac+bc)\leq 9$, đặt x=ab+ac+bc và khảo sát hàm số này.

<span style="font-family: trebuchet ms" ,="" helvetica,="" sans-serif'="">Nỗ lực chưa đủ để thành công.


.if i sad, i do Inequality to become happy. when i happy, i do Inequality to keep happy.




1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh