Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
- - - - -

Bỏ ngẫu nhiên 4 lá thư vào 4 chiếc phong bì đã ghi địa chỉ


  • Please log in to reply
Chủ đề này có 7 trả lời

#1 faraanh

faraanh

    Thượng sĩ

  • Thành viên
  • 239 Bài viết
  • Giới tính:Nam
  • Đến từ:th cao nguyen

Đã gửi 22-11-2012 - 21:06

Bỏ ngẫu nhiên 4 lá thư vào 4 chiếc phong bì đã ghi địa chỉ, tính xác suất để ít nhất có một lá thư bỏ đúng địa chỉ.
thinking about all thing what you say but do not saying all thing what you think

#2 DUONGSMILE

DUONGSMILE

    Binh nhất

  • Thành viên
  • 36 Bài viết
  • Giới tính:Nam
  • Đến từ:HUẾ
  • Sở thích:Làm toán

Đã gửi 04-12-2012 - 20:06

Mình xin giải như sau:
Số kết quả có thể xảy ra là 4!
Gọi A là biến cố để không có thư nào bỏ vào đúng phong bì
ta có$\left | \omega _{A} \right |$=3.2(vì số ta cần xếp sao cho các thư không đặt đúng vị trí, chọn thư 1 có 3 cách vào ba phong bì khác, thư 2 có 2 cách, thư 3, 4 có 1 cách)
Vậy P(A)=$\frac{6}{4!}$
Kết luân : Xác Suất cần tìm là P=1-P(A)=3/4

TOÁN HỌC LÀ HƠI THỞ CỦA CUỘC SỐNG


#3 donghaidhtt

donghaidhtt

    Sĩ quan

  • Thành viên
  • 494 Bài viết
  • Giới tính:Nam
  • Đến từ:Quảng Trị
  • Sở thích:Ngắm gái và ... ngắm gái! :P

Đã gửi 04-12-2012 - 20:22

Gọi A là biến cố để không có thư nào bỏ vào đúng phong bì
ta có$\left | \omega _{A} \right |$=3.2(vì số ta cần xếp sao cho các thư không đặt đúng vị trí, chọn thư 1 có 3 cách vào ba phong bì khác, thư 2 có 2 cách, thư 3, 4 có 1 cách)
Vậy P(A)=$\frac{6}{4!}$
Kết luân : Xác Suất cần tìm là P=1-P(A)=3/4

Một cách tính để thấy cách giải của bạn là sai:
Nếu gọi $4$ phong bì lần lượt là $1, 2, 3, 4$ tương ứng với thư $a, b, c, d$ tức $1-a, 2-b, 3-c, 4-d$. Khi đó $1-2-3-4$ tất cả thư đều bỏ sai tương ứng các trường hợp $badc; bdac;bcda;cadb;cdab;cdba;dcba;dcab;dabc$ có $9$ trường hợp.
Cách này quá dài, có thể tính bằng cách khác.

Bài viết đã được chỉnh sửa nội dung bởi donghaidhtt: 04-12-2012 - 20:23


#4 faraanh

faraanh

    Thượng sĩ

  • Thành viên
  • 239 Bài viết
  • Giới tính:Nam
  • Đến từ:th cao nguyen

Đã gửi 06-12-2012 - 21:15

Mình xin giải như sau:
Số kết quả có thể xảy ra là 4!
Gọi A là biến cố để không có thư nào bỏ vào đúng phong bì
ta có$\left | \omega _{A} \right |$=3.2(vì số ta cần xếp sao cho các thư không đặt đúng vị trí, chọn thư 1 có 3 cách vào ba phong bì khác, thư 2 có 2 cách, thư 3, 4 có 1 cách)
Vậy P(A)=$\frac{6}{4!}$
Kết luân : Xác Suất cần tìm là P=1-P(A)=3/4

Một cách tính để thấy cách giải của bạn là sai:
Nếu gọi $4$ phong bì lần lượt là $1, 2, 3, 4$ tương ứng với thư $a, b, c, d$ tức $1-a, 2-b, 3-c, 4-d$. Khi đó $1-2-3-4$ tất cả thư đều bỏ sai tương ứng các trường hợp $badc; bdac;bcda;cadb;cdab;cdba;dcba;dcab;dabc$ có $9$ trường hợp.
Cách này quá dài, có thể tính bằng cách khác.

bài này thoáng nhìn tưởng đơn giản nhưng nó thực sự khá phức tạp: ta thấy nếu cho tùy ý một lá thư tùy ý vào một phong bì tùy ý thì xác suất của các lần bỏ sau sẽ bị thay đổi, cách bỏ thư của lần trước sẽ ảnh hưởng hưởng đến cách bỏ thư lần sau (các biến cố không độc lập với nhau).
mình xin giải theo cách trực tiếp như sau:
TH1: chỉ có một lá thư bỏ đúng: giải sử ta chọn 1 trong 4 lá để bỏ đúng (có 4 cách), trong mỗi cách đó chọn một lá để bỏ sai (có 2 cách), khi đó 2 lá còn lại nhất thiết là sai (1 cách), vậy trong TH1 này có 4.2.1=8 cách.
TH2: có đúng 2 lá bỏ đúng: tương tự trên, ta chọn 2 lá bỏ đúng (có $C_{4}^{2}$=6 cách), 2 lá còn lại nhất thiết sai (1 cách), vậy trong TH2 này có 6 cách.
TH3: dễ thấy khi 3 lá đã bỏ đúng thì đương nhiên là cả 4 lá đều đúng, vậy có 1 cách.
Gom cả 3 trường hợp lại ta có 8+6+1=15 cách
xác suất là $\frac{15}{24}=\frac{5}{8}=1-\frac{9}{24}$, kết quả này giống bạn donghai dhtt.
kiểu bài này nếu thấy các trường hợp it thì ta nên liệt kê là tối ưu nhất, còn không thì làm như cách trên (dài quá)
thinking about all thing what you say but do not saying all thing what you think

#5 Gioi han

Gioi han

    Sĩ quan

  • Thành viên
  • 384 Bài viết
  • Giới tính:Nữ
  • Đến từ:Nam Định

Đã gửi 09-12-2012 - 01:16

Bỏ ngẫu nhiên 4 lá thư vào 4 chiếc phong bì đã ghi địa chỉ, tính xác suất để ít nhất có một lá thư bỏ đúng địa chỉ.


Gọi $U $là tập hợp các cách bỏ thư và $A_{m}$ là tính chất lá thư thứ m bỏ đúng địa chỉ. Khi đó theo công thức về nguyên lý bù trừ ta có:

$\overline{N} = 4! - N_{1} + N_{2} - N_{3}+N_{4}$

trong đó $N_{m} $ là số tất cả các cách bỏ thư sao cho có $m$ lá thư đúng địa chỉ.
Ta có: $N_{m}$ là tổng theo mọi cách lấy m lá thư từ 4 lá, với mỗi cách lấy m lá thư, có $(4-m)!$ cách bỏ để m lá thư này đúng địa chỉ, ta nhận được:


$N_{m} = C^{m}_{4}(4 - m)! = \frac{4!}{m!}$ và $\overline{N} = 4!(1 - \frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!})$

Từ đó xác suất cần tìm là:$ \frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}=\frac{5}{8}$
Bài toán trên có thể tổng quát với $n$ là thư bỏ vào $n$ phong bì.

Bài viết đã được chỉnh sửa nội dung bởi nguyenhang28091996: 09-12-2012 - 01:17


#6 faraanh

faraanh

    Thượng sĩ

  • Thành viên
  • 239 Bài viết
  • Giới tính:Nam
  • Đến từ:th cao nguyen

Đã gửi 09-12-2012 - 17:22

Gọi $U $là tập hợp các cách bỏ thư và $A_{m}$ là tính chất lá thư thứ m bỏ đúng địa chỉ. Khi đó theo công thức về nguyên lý bù trừ ta có:

$\overline{N} = 4! - N_{1} + N_{2} - N_{3}+N_{4}$

trong đó $N_{m} $ là số tất cả các cách bỏ thư sao cho có $m$ lá thư đúng địa chỉ.
Ta có: $N_{m}$ là tổng theo mọi cách lấy m lá thư từ 4 lá, với mỗi cách lấy m lá thư, có $(4-m)!$ cách bỏ để m lá thư này đúng địa chỉ, ta nhận được:



$N_{m} = C^{m}_{4}(4 - m)! = \frac{4!}{m!}$ và $\overline{N} = 4!(1 - \frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!})$

Từ đó xác suất cần tìm là:$ \frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}=\frac{5}{8}$
Bài toán trên có thể tổng quát với $n$ là thư bỏ vào $n$ phong bì.

bạn có thể giới thiệu cho mình biết sơ qua công thức về nguyên lý bù trừ không?
thinking about all thing what you say but do not saying all thing what you think

#7 Gioi han

Gioi han

    Sĩ quan

  • Thành viên
  • 384 Bài viết
  • Giới tính:Nữ
  • Đến từ:Nam Định

Đã gửi 09-12-2012 - 22:55

bạn có thể giới thiệu cho mình biết sơ qua công thức về nguyên lý bù trừ không?


Mình không có nhiều. Có 1 file nhỏ nhưng sao không up lên diễn đàn được nhỉ? :( ,file này chỉ giới thiệu qua thôi,(máy bị lỗi nên bị mất hết tài liệu),bạn nên google search xem thế nào .

#8 Kofee

Kofee

    Thượng sĩ

  • Thành viên
  • 206 Bài viết
  • Giới tính:Không khai báo

Đã gửi 09-12-2014 - 11:00

Mình áp dụng công thức tính gần đúng số Dn (lấy sàn): Dn=n!/e+0.5=9
-->XS là:(4!-9)/4!=15/24=5/8
 


Xê ra, để người ta làm Toán sĩ!





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh