Đến nội dung


Chú ý

Do trục trặc kĩ thuật nên diễn đàn đã không truy cập được trong ít ngày vừa qua, mong các bạn thông cảm.

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

Topic tổng hợp các bài toán về phương trình nghiệm nguyên.


  • Please log in to reply
Chủ đề này có 565 trả lời

#561 niemvuitoan

niemvuitoan

    Binh nhất

  • Thành viên mới
  • 35 Bài viết

Đã gửi 28-07-2018 - 20:08

Cách của mình nè $\frac{x-1}{2019}=\frac{1-y}{2018}=t$ ,tính x,y theo t rùi dùng $x\geq0$ và $y\geq0$ giới hạn t trong một khoảng giá trị ,chú ý là t nguyên nữa nhé là oke

Bài viết đã được chỉnh sửa nội dung bởi niemvuitoan: 28-07-2018 - 21:04


#562 toanhoc2017

toanhoc2017

    Sĩ quan

  • Thành viên
  • 496 Bài viết

Đã gửi 30-07-2018 - 12:12

Bài tập :
a) Tìm nghiệm nguyên của $(y-2)x^{2018}+y^2+3y-3=0$
b) Tìm nghiệm nguyên của phương trình $(x+2018)(x+2019)(x+2020)(x+2021)+24y=2022$
(sáng tác)

Bài viết đã được chỉnh sửa nội dung bởi toanhoc2017: 30-07-2018 - 12:16


#563 azcva

azcva

    Lính mới

  • Thành viên mới
  • 8 Bài viết

Đã gửi 30-07-2018 - 12:21

Thỉnh giáo 3 câu nè ae ( không biết làm nói vậy cho oai thôi :} ) 

1) Tìm n nguyên để n4+n3+n2 là số chính phương

2) Tìm n nguyên để (n-2010)(n-2011)(n-2012) là số chính phương

3) Tìm các số nguyên tố x,y sao cho : x2+3xy+y2 là số chính phương



#564 toanhoc2017

toanhoc2017

    Sĩ quan

  • Thành viên
  • 496 Bài viết

Đã gửi 30-07-2018 - 12:21

Bài tập :tìm nghiệm nguyên của $2018xy=2017(x+y)$

#565 toanhoc2017

toanhoc2017

    Sĩ quan

  • Thành viên
  • 496 Bài viết

Đã gửi 30-07-2018 - 19:52

Bài tập : Tìm $a, b, c$ nguyên tố để $abc=2017(a+b+c) $

#566 Katnatte

Katnatte

    Lính mới

  • Thành viên mới
  • 1 Bài viết

Đã gửi 13-04-2019 - 21:40

 

Bài 3. Giải phương trình nghiệm nguyên: $x^3-x^2y+3x-2y-5=0$

(Được đăng bởi yellow)


Lời giải. (Phạm Quang Toàn)Ta có $y= \frac{x^3+3x-5}{x^2+2}= x+ \frac{x-5}{x^2+2}$.
Để $x,y \in \mathbb{Z}$ thì $x^2+2 \mid x-5$, suy ra $x^2+2 \mid (x-5)(x+5)$, nên $x^2+2 \mid 27$ hay $x^2+2 \in \{ \pm 1; \pm 3; \pm 9; \pm 27 \}$.
Lại có $x^2+2 \ge 2 \; \forall x \in \mathbb{Z}$ nên chỉ có thể $x^2+2 \in \{ 3,9,27 \}$.
Ta tìm được $x= \pm 1, \pm 5$. Thử lại thì thấy chỉ có $x=-1,x=5$ thỏa mãn. Đến đây dễ tìm $y$.
Phương trình có nghiệm $$\boxed{(x;y) \in \{ (-1;-3),(5;5_ \}}$$

Bài 4. Giải phương trình nghiệm nguyên
a, $3x^5+x^3+6x^2-18x=2001$
b, $x^5-5x^3+4x=24(5y+1)$




(Đăng bởi MyLoVeForYouNMT)


Lời giải. (lời giải của MIM) a, Ta có: $3x^5+6x^2-18x$ chia hết cho $3$, $2001$ cũng chia hết cho $3$ nên $x^3$ chia hết cho $3 \Rightarrow$ $x^3$ chia hết cho $9 \Rightarrow$ vế trái chia hết cho $9$, mà vế phải không chia hết cho $9$, phương trình trên không có nghiệm nguyên
b, Ta có $x^5 - 5x^3 + 4x =x(x+1)(x-1)(x-2)(x+2)$ chia hết cho $5$ ( vì $x,x+1,x-1,x-2,x+2$ là 5 số tự nhiên liên tiếp nên chia hết cho 5) .Mặc khác, vế phải không chia hết cho $5$. vậy PT vô nghiệm.

Bài 5. Tìm nghiệm nguyên của phương trình $$x(x^2+x+1)=4y(y+1) \qquad (1)$$

(Đăng bởi MyLoVeForYouNMT)


Lời giải. (lời giải của Secrets In Inequalities VP) Ta có $$ (1) \Leftrightarrow (x^{2}+1)(x+1)= (2y+1)^{2}$$
Vì $2y+1$ là số lẻ nên $x^2+1$ và $x+1$ là hai số lẻ.
Đặt $(x^2+1,x+1)=d$, thì $d$ lẻ.
Lại có $x+1 \ \vdots d \Rightarrow x^2-1 \ \vdots d$ mà $x^2+1 \ \vdots d$ nên $2 \ \vdots d$. Do đó $d=1$.
Vậy $(x^2+1,x-1)=1$, nên $x^2+1$ và $x+1$ là hai số chính phương.
Ta thấy $x^2$ là số chính phương và $x^2+1$ cũng là số chính phương nên chỉ có thể $x=0$. Khi đó $y=0$ Ta tìm được nghiệm nguyên duy nhất của phương trình là $$\boxed{(x;y)=(0;0)}.$$

Chú ý. Bài này ta phải chú ý đến kết quả:
Nếu cho hai số nguyên dương $a,b$ nguyên tố cùng nhau thỏa mãn $ab=x^2$ với $x \in \mathbb{N}^*$ thì $a,b$ là hai số chính phương.

Bài 6. Tìm nghiệm nguyên của phương trình $

$y^2z^2+(y^3-2xy)z+x(x-y)+y^2z^2(y-1)=0$$


(Đăng bởi MIM)


Lời giải. (của xuanmai1998)
$y^2z^2+(y^3-2xy)z+x(x-y)+y^2z^2(y-1)=0$

$\Leftrightarrow (yz-x+\frac{y}{2})^2=y^2z(1-y)(1+z)+\frac{y^2}{4}$

$\Leftrightarrow \frac{y^2}{4}=y^2z(y-1)(1+z)+(yz-x+\frac{y}{2})^2$

$\Rightarrow \frac{y^2}{4}\geq y^2z(y-1)(1+z)$

Nếu $y\geq 2$ thì $z(z+1)(y-1)\geq 2$ (do $z\geq 1$)

$\Rightarrow y^2z(z+1)(y-1)\geq \frac{y^2}{4}$, mâu thuẫn. Do đó $y=1$
Thay $y=1$ vào $\frac{y^2}{4}=y^2z(y-1)(1+z)+(yz-x+\frac{y}{2})^2$ ta có $(z-x+\frac{1}{2})^2=\frac{1}{4}\Leftrightarrow \left[ \begin{array}{l}
x=z \\
x=z+1 \\
\end{array} \right.$

Vậy, các nghiệm của pt đã cho là $(k,1,k);(k+1,1+k)$ với $k$ nguyên dương tùy ý.

Bài 7. Giải phương trình nghiệm nguyên sau: $$2x^6+y^2-3x^3y=320$$

(Đăng bởi Nguyen Viet Khanh 6c)



Lời giải. Cách 1. (của tramyvodoi) Viết phương trình đã cho dưới dạng : $\left ( x^{3} \right )^{2} + \left ( x^{3} - y \right )^{2} = 320$.
Đặt $u = x^{3}$ $,$ $v = x^{3} - y$. Ta có : $u^{2} + v^{2} = 320$. Do $320$ là số chẵn nên $u$ và $v$ có cùng tính chẵn lẻ. Giả sử $u$ $,$ $v$ cùng lẻ, thế thì $u^{2} \equiv 1 \left ( \mod {4} \right )$ và $v^{2} \equiv 1 \left ( \mod {4} \right )$ $\Rightarrow$ $u^{2} + v^{2} \equiv 2 \left ( \mod {4} \right )$ $\Rightarrow$ $u^{2} + v^{2} \neq 320$, vô lý. Vậy $u$ và $v$ cùng chẵn.
Đặt $u = 2u_{1}$ $,$ $v = 2v_{1}$, thay vào ta được $u_{1}^{2} + v_{1}^{2} = 80$. Lập luận tương tự, ta lại có $u_{1}$ và $v_{1}$ cùng chẵn. Tiếp tục, lại đặt $u_{1} = 2u_{2}$ $,$ $v_{1} = 2v_{2}$, và lại suy ra $u_{2}$ và $v_{2}$ cung chẵn $\left ( u_{2}^{2} + v_{2}^{2} = 20 \right )$.
Đặt $u_{2} = 2u_{3}$ $,$ $v_{2} = 2v_{3}$, ta lại được $u_{3}^{2} + v_{3}^{2} = 5$. Do $u$ là lập phương của một số nguyên và $u = 2^{3}u_{3}$, nên suy ra $u_{3}$ cũng là lập phương của một số nguyên. Từ đó các cặp $u_{3}$ $,$ $v_{3}$ thỏa mãn phương trình trên là : $\left ( 1, 2 \right ) ; \left ( -1, 2 \right ) ; \left ( 1, -2 \right ) ; \left ( -1, -2 \right )$.
Vậy dễ dàng tìm được các nghiệm $\left ( x, y \right )$ của phương trình đã cho là : $\left ( 2, -8 \right ) ; \left ( 2, 24 \right ) ; \left ( -2, -24 \right ) ; \left ( -2, 8 \right )$.

Cách 2. (của duaconcuachua98) Ta có pt đã cho tương đương với $$(x^{3})^{2}+(x^{3}-y)^{2}=320$$
Vì $x,y$ nguyên nên $320$ là tổng của $2$ số chính phương
Mà 320 viết thành tổng của 2 số chính phương chỉ có trường hợp là $320=16^{2}+8^{2}$ hoặc $320=16^2+(-8)^2$.
Mà $x^{3}$ là lập phương của 1 số nguyên nên $x^{3}=8$ hoặc $x^3=-8$, suy ra $x=2$ hoặc $x=-2$
+)Với $x=2$ ta có: $64+(8-y)^{2}=320$, suy ra $y=24$ hoặc $y=-8$
+)Với $x=-2$ ta có: $64+(-8-y)^{2}=320$, suy ra $y=8$ hoặc $y=-24$.

(Sẽ cập nhật tiếp ...)

 

câu 5 còn nghiệm y=-1






1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh