Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
* * * * * 1 Bình chọn

Chứng minh rằng: $\frac{a^2-6bc}{x}=\frac{4b^2-3ca}{2y}=\frac{9c^2-2ab}{3z}$


  • Please log in to reply
Chủ đề này có 2 trả lời

#1 yellow

yellow

    Sĩ quan

  • Pre-Member
  • 371 Bài viết
  • Giới tính:Nam
  • Đến từ:THCS Mỹ Châu

Đã gửi 27-12-2012 - 15:50

Cho $a,b,c,x,y,z\neq 0$ và $\frac{x^2-6yz}{a}=\frac{4y^2-3zx}{2b}=\frac{9z^2-2xy}{3c}$
Chứng minh rằng: $\frac{a^2-6bc}{x}=\frac{4b^2-3ca}{2y}=\frac{9c^2-2ab}{3z}$

$\large{\int_{0}^{\infty }xdx<\heartsuit}$

#2 Zaraki

Zaraki

    PQT

  • Phó Quản trị
  • 4260 Bài viết
  • Giới tính:Nam
  • Đến từ:Đảo mộng mơ.
  • Sở thích:Mathematics, Manga

Đã gửi 27-12-2012 - 20:47

Cho $a,b,c,x,y,z\neq 0$ và $\frac{x^2-6yz}{a}=\frac{4y^2-3zx}{2b}=\frac{9z^2-2xy}{3c}$
Chứng minh rằng: $\frac{a^2-6bc}{x}=\frac{4b^2-3ca}{2y}=\frac{9c^2-2ab}{3z}$

Sử dụng tỉ lệ thức của lớp 7.
$$\begin{array}{l} \frac{x^2-6yz}{a}= \frac{4y^2-3xz}{2b}= \frac{9z^2-2xy}{3c} \\ \Rightarrow \frac{(x^2-6yz)^2}{a^2}= \frac{(4y^2-3zx)(9z^2-2xy)}{6bc}= \frac{(x^2-6yz)^2-(4y^2-3zx)(9z^2-2xy)}{a^2-6bc}= \frac{x}{a^2-6bc} \\ = \frac{(4y^2-3xz)^2}{4b^2}= \frac{(x^2-6yz)(9z^2-2xy)}{3ac}= \frac{(4y^2-3xz)^2-(x^2-6yz)(9z^2-2xy)}{4b^2-3ca}= \frac{2y}{4b^2-3ca} \\ = \frac{(9z^2-2xy)^2}{9c^2}= \frac{(x^2-6yz)(4y^2-3xz)}{2ab}= \frac{(9z^2-2xy)^2-(x^2-6yz)(4y^2-3xz)}{9c^2-2ab}= \frac{3z}{9c^2-2ab} \end{array}$$
Do đó $$\frac{a^2-6bc}{x}=\frac{4b^2-3ca}{2y}=\frac{9c^2-2ab}{3z}$$

Bài viết đã được chỉnh sửa nội dung bởi Phạm Quang Toàn: 27-12-2012 - 20:49

“A man's dream will never end!” - Marshall D. Teach.

#3 yellow

yellow

    Sĩ quan

  • Pre-Member
  • 371 Bài viết
  • Giới tính:Nam
  • Đến từ:THCS Mỹ Châu

Đã gửi 28-12-2012 - 07:58

Sử dụng tỉ lệ thức của lớp 7.
$$\begin{array}{l} \frac{x^2-6yz}{a}= \frac{4y^2-3xz}{2b}= \frac{9z^2-2xy}{3c} \\ \Rightarrow \frac{(x^2-6yz)^2}{a^2}= \frac{(4y^2-3zx)(9z^2-2xy)}{6bc}= \frac{(x^2-6yz)^2-(4y^2-3zx)(9z^2-2xy)}{a^2-6bc}= \frac{x}{a^2-6bc} \\ = \frac{(4y^2-3xz)^2}{4b^2}= \frac{(x^2-6yz)(9z^2-2xy)}{3ac}= \frac{(4y^2-3xz)^2-(x^2-6yz)(9z^2-2xy)}{4b^2-3ca}= \frac{2y}{4b^2-3ca} \\ = \frac{(9z^2-2xy)^2}{9c^2}= \frac{(x^2-6yz)(4y^2-3xz)}{2ab}= \frac{(9z^2-2xy)^2-(x^2-6yz)(4y^2-3xz)}{9c^2-2ab}= \frac{3z}{9c^2-2ab} \end{array}$$
Do đó $$\frac{a^2-6bc}{x}=\frac{4b^2-3ca}{2y}=\frac{9c^2-2ab}{3z}$$

Bạn ơi, chỗ này đâu có bằng nhau $\frac{(x^2-6yz)^2-(4y^2-3zx)(9z^2-2xy)}{a^2-6bc}= \frac{x}{a^2-6bc}$
Nó phải như thế này chứ: $\frac{(x^2-6yz)^2-(4y^2-3zx)(9z^2-2xy)}{a^2-6bc}= \frac{x(x^3+8y^3+27z^3-18xyz)}{a^2-6bc}$

Bài viết đã được chỉnh sửa nội dung bởi yellow: 28-12-2012 - 07:59


$\large{\int_{0}^{\infty }xdx<\heartsuit}$




0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh