Đến nội dung


Chú ý

Do trục trặc kĩ thuật nên diễn đàn đã không truy cập được trong ít ngày vừa qua, mong các bạn thông cảm.

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
* * * * * 1 Bình chọn

$a^{2011}+\frac{1}{b^{2012}}=b^{2011}+\frac{1}{c^{2012}}=c^{2011}+\frac{1}{a^{2012}}$


  • Please log in to reply
Chủ đề này có 3 trả lời

#1 yellow

yellow

    Sĩ quan

  • Pre-Member
  • 371 Bài viết
  • Giới tính:Nam
  • Đến từ:THCS Mỹ Châu

Đã gửi 27-12-2012 - 15:53

Cho $a,b,c>0$ và $a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}$
Chứng minh rằng: $a^{2011}+\frac{1}{b^{2012}}=b^{2011}+\frac{1}{c^{2012}}=c^{2011}+\frac{1}{a^{2012}}$

$\large{\int_{0}^{\infty }xdx<\heartsuit}$

#2 DarkBlood

DarkBlood

    Thiếu úy

  • Thành viên
  • 619 Bài viết
  • Giới tính:Nam

Đã gửi 27-12-2012 - 18:47

Cho $a,b,c>0$ và $a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}$
Chứng minh rằng: $a^{2011}+\frac{1}{b^{2012}}=b^{2011}+\frac{1}{c^{2012}}=c^{2011}+\frac{1}{a^{2012}}$

$a+\frac{1}{b}=b+\frac{1}{c}$
$\Leftrightarrow a-b=\frac{1}{c}-\frac{1}{b}$
$\Leftrightarrow a-b=\frac{b-c}{bc}$
Tương tự ta có:
$\Leftrightarrow b-c=\frac{c-a}{ca}$
$\Leftrightarrow c-a=\frac{a-b}{ab}$
Do đó:
$(a-b)(b-c)(c-a)=\frac{(a-c)(b-c)(c-a)}{(abc)^2}$
$\Leftrightarrow (a-b)(b-c)(c-a)(a^2b^2c^2-1)=0$

$\Leftrightarrow \left[ \begin{array}{l} a=b=c \\ a^2b^2c^2=1 \end{array} \right.$

$\Leftrightarrow \left[ \begin{array}{l} a=b=c \\ abc=1 \end{array} \right.$ $(abc\neq -1$ vì $a,b,c>0)$
Trường hợp 1: $a=b=c$
Ta có: $a^{2011}+\frac{1}{b^{2012}}=b^{2011}+\frac{1}{c^{2012}}=c^{2011}+\frac{1}{a^{2012}}$ $($vì $a=b=c)$
Trường hợp 2: $abc=1$
Theo mình nghĩ chỗ này cần thêm điều kiện $a,b,c\in N,$ chứ nếu đề không có điều kiện này, ta thử 3 số $a=0,25;$ $b=2;$ $c=2$ thì thay vào trái với đpcm.

Bài viết đã được chỉnh sửa nội dung bởi Hoang Huy Thong: 27-12-2012 - 20:56


#3 yellow

yellow

    Sĩ quan

  • Pre-Member
  • 371 Bài viết
  • Giới tính:Nam
  • Đến từ:THCS Mỹ Châu

Đã gửi 30-12-2012 - 11:09

$a+\frac{1}{b}=b+\frac{1}{c}$
$\Leftrightarrow a-b=\frac{1}{c}-\frac{1}{b}$
$\Leftrightarrow a-b=\frac{b-c}{bc}$
Tương tự ta có:
$\Leftrightarrow b-c=\frac{c-a}{ca}$
$\Leftrightarrow c-a=\frac{a-b}{ab}$
Do đó:
$(a-b)(b-c)(c-a)=\frac{(a-c)(b-c)(c-a)}{(abc)^2}$
$\Leftrightarrow (a-b)(b-c)(c-a)(a^2b^2c^2-1)=0$

$\Leftrightarrow \left[ \begin{array}{l} a=b=c \\ a^2b^2c^2=1 \end{array} \right.$

$\Leftrightarrow \left[ \begin{array}{l} a=b=c \\ abc=1 \end{array} \right.$ $(abc\neq -1$ vì $a,b,c>0)$
Trường hợp 1: $a=b=c$
Ta có: $a^{2011}+\frac{1}{b^{2012}}=b^{2011}+\frac{1}{c^{2012}}=c^{2011}+\frac{1}{a^{2012}}$ $($vì $a=b=c)$
Trường hợp 2: $abc=1$
Theo mình nghĩ chỗ này cần thêm điều kiện $a,b,c\in N,$ chứ nếu đề không có điều kiện này, ta thử 3 số $a=0,25;$ $b=2;$ $c=2$ thì thay vào trái với đpcm.

Nếu có thêm điều kiện $a,b,c\inN$ thì làm tiếp thế nào bạn?

$\large{\int_{0}^{\infty }xdx<\heartsuit}$

#4 DarkBlood

DarkBlood

    Thiếu úy

  • Thành viên
  • 619 Bài viết
  • Giới tính:Nam

Đã gửi 30-12-2012 - 11:32

Nếu có thêm điều kiện $a,b,c\inN$ thì làm tiếp thế nào bạn?

Nếu thêm $a,b,c\inN $. Ta có:
$abc=1$ mà $a,$ $b,$ $c>0$ nên $a=b=c=1$ tới đây quay lại trường hợp 1 :)




1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh