Đến nội dung


Chú ý

Nếu bạn gặp lỗi trong quá trinh đăng ký thành viên, hoặc đã đăng ký thành công nhưng không nhận được email kích hoạt, hãy thực hiện những bước sau:

  • Đăng nhập với tên và mật khẩu bạn đã dùng kể đăng ký. Dù bị lỗi nhưng hệ thống đã lưu thông tin của bạn vào cơ sở dữ liệu, nên có thể đăng nhập được.
  • Sau khi đăng nhập, phía góc trên bên phải màn hình sẽ có nút "Gửi lại mã kích hoạt", bạn nhấn vào nút đó để yêu cầu gửi mã kích hoạt mới qua email.
Nếu bạn đã quên mật khẩu thì lúc đăng nhập hãy nhấn vào nút "Tôi đã quên mật khẩu" để hệ thống gửi mật khẩu mới cho bạn, sau đó làm theo hai bước trên để kích hoạt tài khoản. Lưu ý sau khi đăng nhập được bạn nên thay mật khẩu mới.

Nếu vẫn không đăng nhập được, hoặc gặp lỗi "Không có yêu cầu xác nhận đang chờ giải quyết cho thành viên đó", bạn hãy gửi email đến [email protected] để được hỗ trợ.
---
Do sự cố ngoài ý muốn, tất cả bài viết và thành viên đăng kí sau ngày 08/08/2019 đều không thể được khôi phục. Những thành viên nào tham gia diễn đàn sau ngày này xin vui lòng đăng kí lại tài khoản. Ban Quản Trị rất mong các bạn thông cảm. Mọi câu hỏi hay thắc mắc các bạn có thể đăng vào mục Hướng dẫn - Trợ giúp để được hỗ trợ. Ngoài ra nếu các bạn thấy diễn đàn bị lỗi thì xin hãy thông báo cho BQT trong chủ đề Báo lỗi diễn đàn. Cảm ơn các bạn.

Ban Quản Trị.


Hình ảnh
- - - - -

CMR: nếu $a+b=1$ thì $a^{n}+b^{n}\geq \frac{1}{2^{n-1}}$, $\forall n\geq 1, n\in N$


  • Please log in to reply
Chủ đề này có 7 trả lời

#1 whiterose96

whiterose96

    Hạ sĩ

  • Thành viên
  • 80 Bài viết
  • Giới tính:Nữ

Đã gửi 29-12-2012 - 05:52

CMR: nếu $a+b=1$ thì $a^{n}+b^{n}\geq \frac{1}{2^{n-1}}$, $\forall n\geq 1, n\in N$

Hình đã gửi


#2 tinhyeutuoitre

tinhyeutuoitre

    Binh nhất

  • Thành viên
  • 32 Bài viết
  • Giới tính:Nam

Đã gửi 29-12-2012 - 08:28

cái này dùng quy nạp nha bạn
với n=1 và n=2 bất đẳng thức đúng(chứng minh điều này khá đơn giản)
g/s: bdt đúng đến n=k-1 thì ta phải chứng minh $a^{k}+b^{k}\geq \frac{1}{2^{k-1}}$
ta có $a^{k}+b^{k}=(a+b)(a^{k-1}+b^{k-1})-ab(a^{k-2}+b^{k-2})\geq a^{k-1}+b^{k-1}-\frac{(a+b)^{2}}{4}(a^{k-2}+b^{k-2})\geq \frac{1}{2^{k-2}}-\frac{1}{2^{k-1}}=\frac{1}{2^{k-1}}$
từ đó ta có dpcm
TÌNH YÊU TOÁN CŨNG ĐẾN TỪ TRÁI TIM

#3 whiterose96

whiterose96

    Hạ sĩ

  • Thành viên
  • 80 Bài viết
  • Giới tính:Nữ

Đã gửi 29-12-2012 - 10:47

cái này dùng quy nạp nha bạn
với n=1 và n=2 bất đẳng thức đúng(chứng minh điều này khá đơn giản)
g/s: bdt đúng đến n=k-1 thì ta phải chứng minh $a^{k}+b^{k}\geq \frac{1}{2^{k-1}}$
ta có $a^{k}+b^{k}=(a+b)(a^{k-1}+b^{k-1})-ab(a^{k-2}+b^{k-2})\geq a^{k-1}+b^{k-1}-\frac{(a+b)^{2}}{4}(a^{k-2}+b^{k-2})\geq \frac{1}{2^{k-2}}-\frac{1}{2^{k-1}}=\frac{1}{2^{k-1}}$
từ đó ta có dpcm


bạn có làm đc theo cách dùng nhị thức newton k? có cách đó nữa nhưng mình làm chưa ra

Hình đã gửi


#4 tinhyeutuoitre

tinhyeutuoitre

    Binh nhất

  • Thành viên
  • 32 Bài viết
  • Giới tính:Nam

Đã gửi 30-12-2012 - 09:46

cách đó tớ không biết nhưng tớ có cách khác đó bạn
bạn nhân chéo lên xong dùng bất đảng thức holder nha
TÌNH YÊU TOÁN CŨNG ĐẾN TỪ TRÁI TIM

#5 Ispectorgadget

Ispectorgadget

    Nothing

  • Quản trị
  • 2937 Bài viết
  • Giới tính:Không khai báo
  • Đến từ:Nơi tình yêu bắt đầu
  • Sở thích:Làm "ai đó" vui

Đã gửi 30-12-2012 - 11:35

CMR: nếu $a+b=1$ thì $a^{n}+b^{n}\geq \frac{1}{2^{n-1}}$, $\forall n\geq 1, n\in N$

Đặt $a=\frac{1}{2}+h;b=\frac{1}{2}-h$ do đó $$a^n+b^n=\left(\frac{1}{2}+h \right )^n+\left(\frac{1}{2}-h \right )^n =\left(\frac{1}{2n}+C_n^1 \frac{h}{2^{n-1}}+C_n^2.\frac{h^2}{2^{n-2}}+... \right )+\left(\frac{1}{2}-C_n^2.\frac{h^2}{2^{n-2}}+... \right )$$
$$=\frac{1}{2^{n-1}}+C_n^2\frac{h}{2^{n-1}}+C_n^4\frac{h^4}{2^{n-3}}+... \ge \frac{1}{2^{n-1}}$$
Dấu "=" xảy ra khi $h=0 \iff a=b=\frac{1}{2}$
►|| The aim of life is self-development. To realize one's nature perfectly - that is what each of us is here for. ™ ♫ Giao diện website du lịch miễn phí Những bí ẩn chưa biết

#6 whiterose96

whiterose96

    Hạ sĩ

  • Thành viên
  • 80 Bài viết
  • Giới tính:Nữ

Đã gửi 30-12-2012 - 12:05

$\frac{1}{2^{n-1}}+C_n^2\frac{h}{2^{n-1}}+C_n^4\frac{h^4}{2^{n-3}}+... \ge \frac{1}{2^{n-1}}$


Kiên giải thích rõ phần này đi, tớ bị mắc chỗ này k hiểu

Bài viết đã được chỉnh sửa nội dung bởi whiterose96: 30-12-2012 - 12:05

Hình đã gửi


#7 Ispectorgadget

Ispectorgadget

    Nothing

  • Quản trị
  • 2937 Bài viết
  • Giới tính:Không khai báo
  • Đến từ:Nơi tình yêu bắt đầu
  • Sở thích:Làm "ai đó" vui

Đã gửi 30-12-2012 - 12:08

Kiên giải thích rõ phần này đi, tớ bị mắc chỗ này k hiểu

Cái này hiển nhiên thôi mà :| ví dụ cho $a,b \ge 0$ thì $a^2+b^2 \ge a$ khi đó $b=0$
►|| The aim of life is self-development. To realize one's nature perfectly - that is what each of us is here for. ™ ♫ Giao diện website du lịch miễn phí Những bí ẩn chưa biết

#8 whiterose96

whiterose96

    Hạ sĩ

  • Thành viên
  • 80 Bài viết
  • Giới tính:Nữ

Đã gửi 30-12-2012 - 12:30

Ừ nhỉ, tớ k để ý kĩ :unsure:

Hình đã gửi





0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh