Đến nội dung


Chú ý

Nếu bạn gặp lỗi trong quá trinh đăng ký thành viên, hoặc đã đăng ký thành công nhưng không nhận được email kích hoạt, hãy thực hiện những bước sau:

  • Đăng nhập với tên và mật khẩu bạn đã dùng kể đăng ký. Dù bị lỗi nhưng hệ thống đã lưu thông tin của bạn vào cơ sở dữ liệu, nên có thể đăng nhập được.
  • Sau khi đăng nhập, phía góc trên bên phải màn hình sẽ có nút "Gửi lại mã kích hoạt", bạn nhấn vào nút đó để yêu cầu gửi mã kích hoạt mới qua email.
Nếu bạn đã quên mật khẩu thì lúc đăng nhập hãy nhấn vào nút "Tôi đã quên mật khẩu" để hệ thống gửi mật khẩu mới cho bạn, sau đó làm theo hai bước trên để kích hoạt tài khoản. Lưu ý sau khi đăng nhập được bạn nên thay mật khẩu mới.

Nếu vẫn không đăng nhập được, hoặc gặp lỗi "Không có yêu cầu xác nhận đang chờ giải quyết cho thành viên đó", bạn hãy gửi email đến [email protected] để được hỗ trợ.
---
Do sự cố ngoài ý muốn, tất cả bài viết và thành viên đăng kí sau ngày 08/08/2019 đều không thể được khôi phục. Những thành viên nào tham gia diễn đàn sau ngày này xin vui lòng đăng kí lại tài khoản. Ban Quản Trị rất mong các bạn thông cảm. Mọi câu hỏi hay thắc mắc các bạn có thể đăng vào mục Hướng dẫn - Trợ giúp để được hỗ trợ. Ngoài ra nếu các bạn thấy diễn đàn bị lỗi thì xin hãy thông báo cho BQT trong chủ đề Báo lỗi diễn đàn. Cảm ơn các bạn.

Ban Quản Trị.


Hình ảnh
* - - - - 1 Bình chọn

Tìm số hạng tổng quát $u_{n}$


  • Please log in to reply
Chủ đề này có 6 trả lời

#1 whiterose96

whiterose96

    Hạ sĩ

  • Thành viên
  • 80 Bài viết
  • Giới tính:Nữ

Đã gửi 25-01-2013 - 19:54

Cho dãy $(U_{n})$ thỏa mãn $\left\{\begin{matrix} u_{1}=1\\ u_{n+1}-u_{n}-2=\frac{3}{n}(u_{n}-1) \end{matrix}\right.$ $\left ( n\geq 1,n \epsilon N \right )$. Tìm số hạng tổng quát $u_{n}$.

Bài viết đã được chỉnh sửa nội dung bởi whiterose96: 26-01-2013 - 22:10

Hình đã gửi


#2 VNSTaipro

VNSTaipro

    Sĩ quan

  • Thành viên
  • 322 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT Hoàng Hoa Thám, Đà Nẵng

Đã gửi 25-01-2013 - 20:53

Cho dãy $(U_{n})$ thỏa mãn $\left\{\begin{matrix} u_{1}=1\\ u_{n+1}-u_{n}-2=\frac{3}{n}(x_{n}-1) \end{matrix}\right.$ $\left ( n\geq 1,n \epsilon N \right )$. Tìm số hạng tổng quát $u_{n}$

Bạn xem lại đề đi bạn

Bài viết đã được chỉnh sửa nội dung bởi VNSTaipro: 25-01-2013 - 20:54

Hình đã gửi


#3 whiterose96

whiterose96

    Hạ sĩ

  • Thành viên
  • 80 Bài viết
  • Giới tính:Nữ

Đã gửi 25-01-2013 - 22:23

Bạn xem lại đề đi bạn


đề đúng đấy

Hình đã gửi


#4 VNSTaipro

VNSTaipro

    Sĩ quan

  • Thành viên
  • 322 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT Hoàng Hoa Thám, Đà Nẵng

Đã gửi 26-01-2013 - 19:55

đề đúng đấy

Sao lại có $x_{n}$ ở đây bạn??

Hình đã gửi


#5 whiterose96

whiterose96

    Hạ sĩ

  • Thành viên
  • 80 Bài viết
  • Giới tính:Nữ

Đã gửi 26-01-2013 - 22:10

Sao lại có $x_{n}$ ở đây bạn??

ừ nhỉ, tớ nhầm, thế mà xem lại k nhìn ra, chố đó là $u_{n}$

Hình đã gửi


#6 dark templar

dark templar

    Kael-Invoker

  • Hiệp sỹ
  • 3788 Bài viết
  • Giới tính:Nam
  • Đến từ:TPHCM
  • Sở thích:Đọc fanfiction và theo dõi DOTA chuyên nghiệp

Đã gửi 27-01-2013 - 08:32

Cho dãy $(U_{n})$ thỏa mãn $\left\{\begin{matrix} u_{1}=1\\ u_{n+1}-u_{n}-2=\frac{3}{n}(u_{n}-1) \end{matrix}\right.$ $\left ( n\geq 1,n \epsilon N \right )$. Tìm số hạng tổng quát $u_{n}$.

Phép đặt $v_{n}=u_{n}-1$ cho ta :$\{v_{n} \}:\left\{ \begin{array}{l}{v_1} = 0\\{v_{n + 1}} - {v_n} = \frac{{3{v_n}}}{n};\forall n \ge 1.\end{array} \right.$
Dễ thấy :
$$v_{n+1}=\frac{n+3}{n}v_{n} \implies v_{n}=\frac{n+2}{n-1}v_{n-1}=\frac{n+2}{n-1}.\frac{n+1}{n-2}v_{n-2}=....=\frac{(n+2)(n+1)n}{6}v_0=0$$
Do đó $u_{n}=1;\forall n \ge 1$.
"Do you still... believe in me ?" Sarah Kerrigan asked Jim Raynor - Starcraft II:Heart Of The Swarm.

#7 whiterose96

whiterose96

    Hạ sĩ

  • Thành viên
  • 80 Bài viết
  • Giới tính:Nữ

Đã gửi 27-01-2013 - 22:07

Phép đặt $v_{n}=u_{n}-1$ cho ta :$\{v_{n} \}:\left\{ \begin{array}{l}{v_1} = 0\\{v_{n + 1}} - {v_n} = \frac{{3{v_n}}}{n};\forall n \ge 1.\end{array} \right.$
Dễ thấy :
$$v_{n+1}=\frac{n+3}{n}v_{n} \implies v_{n}=\frac{n+2}{n-1}v_{n-1}=\frac{n+2}{n-1}.\frac{n+1}{n-2}v_{n-2}=....=\frac{(n+2)(n+1)n}{6}v_0=0$$
Do đó $u_{n}=1;\forall n \ge 1$.


bạn xem lại đi, hình như nhầm rồi, phải là $v_{n+1}=\frac{n+3}{n}v_{n}+2$ chứ

@Dark templar:Nhầm thật :P

Bài viết đã được chỉnh sửa nội dung bởi dark templar: 28-01-2013 - 13:21

Hình đã gửi





0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh