Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

Tìm số ... tổng bằng 2009


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 BlackSelena

BlackSelena

    $\mathbb{Sayonara}$

  • Hiệp sỹ
  • 1549 Bài viết
  • Giới tính:Không khai báo

Đã gửi 10-02-2013 - 18:45

Chúc mừng năm mới 2013 :) !


Bài toán : Tìm số sao cho tổng của số đó và các chữ số bằng 2009

Bài viết đã được chỉnh sửa nội dung bởi BlackSelena: 10-02-2013 - 18:47

"I helped rehabilitate a part of the world. If I use this ability, maybe I can even help restore the rest of this depraved world."

#2 duongld

duongld

    Binh nhì

  • Thành viên
  • 10 Bài viết
  • Giới tính:Nam
  • Đến từ:LD

Đã gửi 10-02-2013 - 19:16

gọi $n$ và $S(n)$ lần lượt là số cần tìm và tổng các chữ số của nó
$n$ không thể là số có 5 chữ số
Giả sử $n$ là số có 3 chữ số:
$n+S(n)\leq 999+9.3=1026$(không thỏa)
nên $n$ phải là số có 4 chữ số
xét $n=2000$ (không thỏa)
với $n$ dạng $\overline{2abc}$ $(a,b,c)$ là các số tự nhiên
ta có:$n+S(n)=2000+2+101a+11b+2c=2009$
với $a,b\geq 1\Rightarrow n+S(n)> 2009$ (không thỏa)
với $a=0,b=0\Rightarrow 2d=5\Rightarrow c=2,5$(không thỏa)
Mà $n+S(n)\leq n+36\Rightarrow 2009\leq n+36\Rightarrow 1973\leq n$
Nên $n$ có dạng $\overline{19bc}$
theo đề:$1900+10+11b+2c=2009\Leftrightarrow 11b+2c=99$
ta có:$2c$ chia hết cho $2$ nên suy ra $11b$ lẻ (vì $99$ lẻ)
ta lại có:$0\leq 2c\leq 18\Leftrightarrow -18\leq -2c\leq 0$
$\Leftrightarrow 99-18\leq 99-2c\leq 99$
$81\leq 11b\leq 99$
mà $11b$ là số tự nhiên và lẻ nên $11b=99$ hay $b=9$ từ đó tìm được $c=0$

Bài viết đã được chỉnh sửa nội dung bởi duongld: 10-02-2013 - 19:17

Nguyễn Mạnh Trùng Dương tự hào là thành viên của VMF

Mời các mem Sài Gòn tham gia quán trà đá của anh Badman tại đây




0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh