Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

$(a^{2}+ab+bc)(b^{2}+bc+ca)(c^{2}+ca+ab)\ge (ab+bc+ca)^{3}$


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 Sagittarius912

Sagittarius912

    Trung úy

  • Thành viên
  • 776 Bài viết
  • Giới tính:Nam
  • Đến từ:Quảng Bình

Đã gửi 23-02-2013 - 00:54

Cho $a,b,c>0$. CMR
$(a^{2}+ab+bc)(b^{2}+bc+ca)(c^{2}+ca+ab)\ge (ab+bc+ca)^{3}$

#2 minhtuyb

minhtuyb

    Giả ngu chuyên nghiệp

  • Thành viên
  • 470 Bài viết
  • Giới tính:Nam
  • Đến từ:C. Toán 10A2 - HSGS
  • Sở thích:Doing math !!!

Đã gửi 03-03-2013 - 15:23

Cho $a,b,c>0$. CMR
$(a^{2}+ab+bc)(b^{2}+bc+ca)(c^{2}+ca+ab)\ge (ab+bc+ca)^{3}$

KMTTQ, giả sử $a$ nằm giữa $b$ và $c$. Áp dụng BĐT $Holder$ ta có:
$$(a^2+ab+bc)(ac+b^2+bc)(c^2+a^2+bc)\ge (ac+ab+bc)^3$$

Vậy ta cần chứng minh:
$$c^2+ca+ab\ge c^2+a^2+bc\\ \Leftrightarrow (a-b)(a-c)\le 0$$

Đúng theo điều giả sử. Vậy BĐT đã cho được c/m, dấu bằng xảy ra khi và chỉ khi $a=b=c$ $\square$

Phấn đấu vì tương lai con em chúng ta!




2 người đang xem chủ đề

0 thành viên, 2 khách, 0 thành viên ẩn danh