Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

$\frac{a_1^k+a_2^k+...+a_n^k}{n}\geq (\frac{a_1+a_2+...+a_n}{n})^k$


  • Please log in to reply
Chủ đề này có 5 trả lời

#1 dorabesu

dorabesu

    Trung sĩ

  • Thành viên
  • 167 Bài viết
  • Giới tính:Nam
  • Đến từ:Làng Ninja

Đã gửi 28-02-2013 - 22:08

Cmr : $\frac{a_1^k+a_2^k+...+a_n^k}{n}\geq (\frac{a_1+a_2+...+a_n}{n})^k$ với mọi $k,n\in N*;a_i\in R$

#2 dorabesu

dorabesu

    Trung sĩ

  • Thành viên
  • 167 Bài viết
  • Giới tính:Nam
  • Đến từ:Làng Ninja

Đã gửi 28-02-2013 - 22:16

Mình không biết Holder :(

#3 dtvanbinh

dtvanbinh

    Trung sĩ

  • Thành viên
  • 122 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT Chuyên Bắc Giang

Đã gửi 28-02-2013 - 22:53

Mình không biết Holder :(

với $k=1$ ta có bất đẳng thức đúng
với $k\geq 2$
đặt $f(x)=x^{k}$
là hàm lồi nên áp dụng ngay Jensen ta có đpcm
$f(a_{1})+f(a_{2})+...+f(a_{n})\geq nf(\frac{a_{1}+a_{2}+...+a_{n}}{n})$

Bài viết đã được chỉnh sửa nội dung bởi dtvanbinh: 01-03-2013 - 14:08

$(2x^{2}+2y^{2}+z^{2}-1)^{3}-\frac{1}{10}x^{2}z^{3}-y^{2}z^{3}=0$

 

$(x^{2}+\frac{9}{4}y^{2}+z^{2}-1)^{3}-x^{2}z^{3}-\frac{9}{80}y^{2}z^{3}=0$

 

                                                            

                                                             


#4 dorabesu

dorabesu

    Trung sĩ

  • Thành viên
  • 167 Bài viết
  • Giới tính:Nam
  • Đến từ:Làng Ninja

Đã gửi 01-03-2013 - 17:08

với $k=1$ ta có bất đẳng thức đúng
với $k\geq 2$
đặt $f(x)=x^{k}$
là hàm lồi nên áp dụng ngay Jensen ta có đpcm
$f(a_{1})+f(a_{2})+...+f(a_{n})\geq nf(\frac{a_{1}+a_{2}+...+a_{n}}{n})$

Phạm vi THCS thôi anh :)

#5 dtvanbinh

dtvanbinh

    Trung sĩ

  • Thành viên
  • 122 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT Chuyên Bắc Giang

Đã gửi 01-03-2013 - 17:39

Phạm vi THCS thôi anh :)

THCS của em đây
chứng minh bằng quy nạp
trường hợp $n=2$ chứng minh dễ
giả sử bất bẳng thức đúng với n
ta có
$a_{1}^{k}+a_{2}^{k}+...+a_{n}^{k}\geq n(\frac{a_{1}+...+a_{n}}{n})^{k}$
ta sẽ chứng minh bất đẳng thức đúng với n-1
chọn $a_{n}=\frac{1}{n-1}\sum_{i=1}^{n-1}a_{i}$
ta có
$a_{1}^{k}+a_{2}^{k}+...+a_{n-1}^{k}+a_{n}^{k}\geq na_{n}^{k}$
nên
$a_{1}^{k}+a_{2}^{k}+...+a_{n-1}^{k}\geq (n-1)a_{n}^{k}=(n-1)(\frac{a_{1}+a_{2}+...+a_{n-1}}{n-1})^{k}$
ta có đpcm

$(2x^{2}+2y^{2}+z^{2}-1)^{3}-\frac{1}{10}x^{2}z^{3}-y^{2}z^{3}=0$

 

$(x^{2}+\frac{9}{4}y^{2}+z^{2}-1)^{3}-x^{2}z^{3}-\frac{9}{80}y^{2}z^{3}=0$

 

                                                            

                                                             


#6 dorabesu

dorabesu

    Trung sĩ

  • Thành viên
  • 167 Bài viết
  • Giới tính:Nam
  • Đến từ:Làng Ninja

Đã gửi 01-03-2013 - 20:18

THCS của em đây
chứng minh bằng quy nạp
trường hợp $n=2$ chứng minh dễ
giả sử bất bẳng thức đúng với n
ta có
$a_{1}^{k}+a_{2}^{k}+...+a_{n}^{k}\geq n(\frac{a_{1}+...+a_{n}}{n})^{k}$
ta sẽ chứng minh bất đẳng thức đúng với n-1
chọn $a_{n}=\frac{1}{n-1}\sum_{i=1}^{n-1}a_{i}$
ta có
$a_{1}^{k}+a_{2}^{k}+...+a_{n-1}^{k}+a_{n}^{k}\geq na_{n}^{k}$
nên
$a_{1}^{k}+a_{2}^{k}+...+a_{n-1}^{k}\geq (n-1)a_{n}^{k}=(n-1)(\frac{a_{1}+a_{2}+...+a_{n-1}}{n-1})^{k}$
ta có đpcm

Cám ơn anh :D




1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh