Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
- - - - -

$\left\{\begin{matrix} x+y-\sqrt{xy}=1\\ \sqrt{x^2+3}+\sqrt{y^2+3}=4 \end{matrix}\right.$


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 mango

mango

    Thượng sĩ

  • Thành viên
  • 220 Bài viết
  • Giới tính:Nam

Đã gửi 30-03-2013 - 05:34

Giải HPT:

$\left\{\begin{matrix} x+y-\sqrt{xy}=1\\ \sqrt{x^2+3}+\sqrt{y^2+3}=4 \end{matrix}\right.$


  • NLT yêu thích

#2 End

End

    Where endless

  • Thành viên
  • 93 Bài viết
  • Giới tính:Nam
  • Đến từ:Nơi bất tận.

Đã gửi 30-03-2013 - 06:18

Giải HPT:

$\left\{\begin{matrix} x+y-\sqrt{xy}=1\\ \sqrt{x^2+3}+\sqrt{y^2+3}=4 \end{matrix}\right.$

Bình phương 2 PT lên. Rồi đặt $x^{2}+y^{2}=a$ và $\sqrt{xy}=b$

 

Ta được hệ PT: $\left\{\begin{matrix} a+b^{2}=1+2b & \\ a+2\sqrt{b^{4}+3a+9}=10& \end{matrix}\right.$

 

Ta có: $a=-b^{2}+1+2b$

 

Thế vào PT dưới bình phương lên. Ta đc: $3b^{4}+4b^{3}-34b^{2}+60b-33=0$

 

$\Leftrightarrow (b-1)(3b^{3}+7b^{2}-27b+33)=0$

 

Với b dương, nên b=1 là no duy nhất.


Nhấn nút 2013-011.pngthay lời cảm ơn !!





0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh