Đến nội dung


Hình ảnh

$$\sum_{k = 0}^\infty \frac{2^k}{\sum\limits_{i = 0}^k A^{k - i}B^i}=?$$


  • Please log in to reply
Chủ đề này có 2 trả lời

#1 dark templar

dark templar

    Kael-Invoker

  • Hiệp sỹ
  • 3788 Bài viết
  • Giới tính:Nam
  • Đến từ:TPHCM
  • Sở thích:Đọc fanfiction và theo dõi DOTA chuyên nghiệp

Đã gửi 16-04-2013 - 20:24

Bài toán: Hãy tính $\sum\limits_{k = 0}^\infty  {\frac{{{2^k}}}{{\sum\limits_{i = 0}^k {{{\left( {1 + \sqrt 5 } \right)}^{k - i}}{{\left( {1 - \sqrt 5 } \right)}^i}} }}} $.

 


Bài viết đã được chỉnh sửa nội dung bởi dark templar: 17-04-2013 - 11:48

"Do you still... believe in me ?" Sarah Kerrigan asked Jim Raynor - Starcraft II:Heart Of The Swarm.

#2 chanhquocnghiem

chanhquocnghiem

    Thượng úy

  • Thành viên
  • 1191 Bài viết
  • Giới tính:Nam
  • Đến từ:Vũng Tàu
  • Sở thích:Toán,Thiên văn,Lịch sử

Đã gửi 22-11-2015 - 17:48

Bài toán: Hãy tính $\sum\limits_{k = 0}^\infty  {\frac{{{2^k}}}{{\sum\limits_{i = 0}^k {{{\left( {1 + \sqrt 5 } \right)}^{k - i}}{{\left( {1 - \sqrt 5 } \right)}^i}} }}} $.

Đặt $S=\sum_{i=0}^{k}(1+\sqrt{5})^{k-i}(1-\sqrt{5})^i$.

Ta thấy $S$ là tổng của $k+1$ số hạng đầu của 1 cấp số nhân có $u_1=\left ( 1+\sqrt{5} \right )^k$ và $q=\frac{1-\sqrt{5}}{1+\sqrt{5}}$

$\Rightarrow S=\frac{u_1(q^{k+1}-1)}{q-1}=...=\frac{(1+\sqrt{5})^{k+1}-(1-\sqrt{5})^{k+1}}{2\sqrt{5}}$

$\Rightarrow \frac{2^k}{\sum_{i=0}^{k}(1+\sqrt{5})^{k-i}(1-\sqrt{5})^i}=\frac{2^{k+1}.\sqrt{5}}{(1+\sqrt{5})^{k+1}-(1-\sqrt{5})^{k+1}}=\frac{\sqrt{5}}{\left ( \frac{1+\sqrt{5}}{2} \right )^{k+1}-\left ( \frac{1-\sqrt{5}}{2} \right )^{k+1}}=\frac{1}{F_{k+1}}$

trong đó $F_{k+1}$ là số hạng thứ $k+1$ trong dãy Fibonacci.

Vậy tổng cần tính bằng $\sum_{k=0}^{\infty}\frac{1}{F_{k+1}}=\sum_{k=1}^{\infty}\frac{1}{F_k}\approx 3,359885...$

 

(Tham khảo tại :

  https://vi.wikipedia...i/Dãy_Fibonacci)


...

Ðêm nay tiễn đưa

Giây phút cuối vẫn còn tay ấm tay
Mai sẽ thấm cơn lạnh khi gió lay
Và những lúc mưa gọi thương nhớ đầy ...

 

http://www.wolframal...-15)(x^2-8x+12)


#3 LangTu Mua Bui

LangTu Mua Bui

    Binh nhất

  • Thành viên
  • 32 Bài viết

Đã gửi 22-11-2015 - 19:15

Đặt $S=\sum_{i=0}^{k}(1+\sqrt{5})^{k-i}(1-\sqrt{5})^i$.

Ta thấy $S$ là tổng của $k+1$ số hạng đầu của 1 cấp số nhân có $u_1=\left ( 1+\sqrt{5} \right )^k$ và $q=\frac{1-\sqrt{5}}{1+\sqrt{5}}$

$\Rightarrow S=\frac{u_1(q^{k+1}-1)}{q-1}=...=\frac{(1+\sqrt{5})^{k+1}-(1-\sqrt{5})^{k+1}}{2\sqrt{5}}$

$\Rightarrow \frac{2^k}{\sum_{i=0}^{k}(1+\sqrt{5})^{k-i}(1-\sqrt{5})^i}=\frac{2^{k+1}.\sqrt{5}}{(1+\sqrt{5})^{k+1}-(1-\sqrt{5})^{k+1}}=\frac{\sqrt{5}}{\left ( \frac{1+\sqrt{5}}{2} \right )^{k+1}-\left ( \frac{1-\sqrt{5}}{2} \right )^{k+1}}=\frac{1}{F_{k+1}}$

trong đó $F_{k+1}$ là số hạng thứ $k+1$ trong dãy Fibonacci.

Vậy tổng cần tính bằng $\sum_{k=0}^{\infty}\frac{1}{F_{k+1}}=\sum_{k=1}^{\infty}\frac{1}{F_k}\approx 3,359885...$

Cái đoạn chứng minh nghịch đạo dãy đó trên mạng sao k thấy bạn ạ,Bạn có thể chứng minh hãy chỉ rõ hơn không 


Bài viết đã được chỉnh sửa nội dung bởi LangTu Mua Bui: 22-11-2015 - 19:46





0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh