Đến nội dung


Chú ý

Nếu bạn gặp lỗi trong quá trinh đăng ký thành viên, hoặc đã đăng ký thành công nhưng không nhận được email kích hoạt, hãy thực hiện những bước sau:

  • Đăng nhập với tên và mật khẩu bạn đã dùng kể đăng ký. Dù bị lỗi nhưng hệ thống đã lưu thông tin của bạn vào cơ sở dữ liệu, nên có thể đăng nhập được.
  • Sau khi đăng nhập, phía góc trên bên phải màn hình sẽ có nút "Gửi lại mã kích hoạt", bạn nhấn vào nút đó để yêu cầu gửi mã kích hoạt mới qua email.
Nếu bạn đã quên mật khẩu thì lúc đăng nhập hãy nhấn vào nút "Tôi đã quên mật khẩu" để hệ thống gửi mật khẩu mới cho bạn, sau đó làm theo hai bước trên để kích hoạt tài khoản. Lưu ý sau khi đăng nhập được bạn nên thay mật khẩu mới.

Nếu vẫn không đăng nhập được, hoặc gặp lỗi "Không có yêu cầu xác nhận đang chờ giải quyết cho thành viên đó", bạn hãy gửi email đến [email protected]net để được hỗ trợ.
---
Do sự cố ngoài ý muốn, tất cả bài viết và thành viên đăng kí sau ngày 08/08/2019 đều không thể được khôi phục. Những thành viên nào tham gia diễn đàn sau ngày này xin vui lòng đăng kí lại tài khoản. Ban Quản Trị rất mong các bạn thông cảm. Mọi câu hỏi hay thắc mắc các bạn có thể đăng vào mục Hướng dẫn - Trợ giúp để được hỗ trợ. Ngoài ra nếu các bạn thấy diễn đàn bị lỗi thì xin hãy thông báo cho BQT trong chủ đề Báo lỗi diễn đàn. Cảm ơn các bạn.

Ban Quản Trị.


Hình ảnh

Chứng minh rằng $2^{\phi (n)}-1$ có các ước số nguyên tố không thuộc tập ${p_1,p_2,...,p_k}$


  • Please log in to reply
Chủ đề này có 4 trả lời

#1 thanhdotk14

thanhdotk14

    Thượng sĩ

  • Thành viên
  • 268 Bài viết
  • Giới tính:Nam
  • Đến từ:Trường THPT chuyên Lê Quý Đôn-Bình Định

Đã gửi 28-04-2013 - 22:42

Bài toán: Cho $n$ là một số nguyên dương lẻ, $n\ge 5$ và có các ước số nguyên tố là $p_1,p_2,...,p_k$. Chứng minh rằng $2^{\phi (n)}-1$ có các ước số nguyên tố không thuộc tập ${p_1,p_2,...,p_k}$

 


Bài viết đã được chỉnh sửa nội dung bởi thanhdotk14: 28-04-2013 - 22:42

-----------------------------------------------------

 

:ukliam2: Untitled1_zps6cf4d69d.jpg :ukliam2:


#2 WhjteShadow

WhjteShadow

    Thượng úy

  • Phó Quản trị
  • 1319 Bài viết
  • Giới tính:Nam

Đã gửi 29-04-2013 - 13:52



Bài toán: Cho $n$ là một số nguyên dương lẻ, $n\ge 5$ và có các ước số nguyên tố là $p_1,p_2,...,p_k$. Chứng minh rằng $2^{\phi (n)}-1$ có các ước số nguyên tố không thuộc tập ${p_1,p_2,...,p_k}$

Ta phát biểu lại định lý Zsigmondy :

Ch0 $a,b,n\in N$ sa0 cho(a,b)=1 và $n\geq 2$ thì tồn tại số $p$ sao cho $p$ là ước của $a^{n}+b^{n}$ mà không là ước của $a^{k}+b^{k}$ với mọi $k< n$ trừ khi $a=2,b=1,k=3$.

-----------------------------------------------------------------------------------------------

Áp dụng vào bài toán, xét 2 trường hợp :

$\star$ Nếu $n$ là 1 số nguyên tố, $\phi(n)=n-1$, giả sử ngược lại là $2^{n-1}-1$ không có ước nguyên dương ngoài $n$ lúc đó $2^{n-1}-1=n^{x}$ với $x\in \mathbb{N}^{*}$. 

  • Nếu $x$ là số chẵn, ta suy ra $(2^{\frac{n-1}{2}}-n^{\frac{x}{2}})(2^{\frac{n-1}{2}}+n^{\frac{x}{2}})=1$. Hay $(2^{\frac{n-1}{2}}-n^{\frac{x}{2}})=(2^{\frac{n-1}{2}}+n^{\frac{x}{2}})=1\Rightarrow n^{\frac{x}{2}}=0$ (Một điều vô lý!)
  • Nếu $x$ là số chẵn thì $2^{n-1}=n^{x}+1=(n+1)\left[n^{x-1}-n^{x-2}+.....+1\right]$ suy ra $n+1$ có dạng $2^{r}$ với $r\in \mathbb{N}^{*}$ và $r<n-1$ $\Rightarrow \left\{\begin{matrix} 2^{n-1}-1=n^{x}\\ 2^{r}-1=n\end{matrix}\right.$, the0 định lý Zsigmondy dễ dàng suy ra vô lý.

Vậy nếu $n$ là snt thì $2^{n-1}-1$ có ước nguyên dương ngoài $n$.

$\star$ Nếu $n$ là hợp số, ta có thể thấy $\phi(n)>p_1-1,p_2-1,...,p_k-1$, lại the0 định lý Zsigmondy thì $2^{\phi(n)}-1$ có ước nguyên tố mà $2^{p_1-1}-1$ không có, nhưng the0 Fermat nhỏ thì $2^{p_1-1}-1\vdots p_1$ (Do $p_1$ lẻ) vậy nên $2^{\phi(n)}-1$

có ước nguyên dương khác $p_1$. Cứ tương tự như vậy ta rút ra $2^{\phi(n)}-1$

có ước nguyên dương khác $p_1,p_2,...,p_k$ và đây chính là đpcm.

Kết thúc chứng minh $\blacksquare$

-----------

Lại dùng đao to giết gà r` =,=''


Bài viết đã được chỉnh sửa nội dung bởi WhjteShadow: 29-04-2013 - 14:03

$$n! \sim \sqrt{2\pi n} \left(\dfrac{n}{e}\right)^n$$

 

“We can only see a short distance ahead, but we can see plenty there that needs to be done.” - Alan Turing


#3 Secrets In Inequalities VP

Secrets In Inequalities VP

    Sĩ quan

  • Thành viên
  • 309 Bài viết
  • Giới tính:Nam
  • Đến từ:Chuyên Vĩnh Phúc
  • Sở thích:Xem phim.

Đã gửi 29-04-2013 - 13:53

Bài toán: Cho $n$ là một số nguyên dương lẻ, $n\ge 5$ và có các ước số nguyên tố là $p_1,p_2,...,p_k$. Chứng minh rằng $2^{\phi (n)}-1$ có các ước số nguyên tố không thuộc tập ${p_1,p_2,...,p_k}$

Giả sử $n={p_1}^{s_1}.{p_2}^{s_2}...{p_k}^{s_k}$ suy ra $\phi (n)= \prod_{i=1}^{k}{p_i}^{s_i-1}({p_1}-1)$ suy ra $\phi (n)$ chẵn

$\Rightarrow \phi (n)= 2a\Rightarrow \prod_{i=1}^{k}{p_i}^{s_i-1}({p_1}-1)= 2a$

$\Rightarrow a\vdots ({p_i}-1)\forall i=1,2,...,k\Rightarrow 2^{a}-1\vdots 2^{P_i-1}-1\vdots {P_i}\forall i=1,2,...,k$

Lại có $2^{\phi (n)}-1= 2^{2a}-1= (2^{a}-1)(2^{a}+1)$.

Dễ thấy $gcd(2^{a}-1,2^{a}+1)= 1\Rightarrow gcd(2^a+1,{p_i})= 1\forall i=1,2...,k$ suy ra $2^a-1$ có  ước số nguyên tố không thuộc tập ${p_1,p_2,...,p_k}$

Suy ra $2^{\phi (n)}-1$ có  ước số nguyên tố không thuộc tập ${p_1,p_2,...,p_k}$.

-----------------

@ Đ : Hình như c chưa xét đến TH $n$ là số nguyên tố @@~

@ T.A : Bài t có liên quan gì đến $n$ là snt đâu @@~

@ T.A : mà đề nó cho $n$ có một đống ước nt r mà

@ Đ : Cái đoạn $\Rightarrow a\vdots ({p_i}-1)\forall i=1,2,...,k$ cần là hợp số. V~ cả 1 đống =))


Bài viết đã được chỉnh sửa nội dung bởi WhjteShadow: 29-04-2013 - 14:10


#4 buivantuanpro123

buivantuanpro123

    Hạ sĩ

  • Thành viên
  • 96 Bài viết
  • Giới tính:Nam
  • Đến từ:nơi không tồn tại
  • Sở thích:học toán

Đã gửi 26-05-2016 - 21:57

Ta phát biểu lại định lý Zsigmondy :

Ch0 $a,b,n\in N$ sa0 cho(a,b)=1 và $n\geq 2$ thì tồn tại số $p$ sao cho $p$ là ước của $a^{n}+b^{n}$ mà không là ước của $a^{k}+b^{k}$ với mọi $k< n$ trừ khi $a=2,b=1,k=3$.

-----------------------------------------------------------------------------------------------

Áp dụng vào bài toán, xét 2 trường hợp :

$\star$ Nếu $n$ là 1 số nguyên tố, $\phi(n)=n-1$, giả sử ngược lại là $2^{n-1}-1$ không có ước nguyên dương ngoài $n$ lúc đó $2^{n-1}-1=n^{x}$ với $x\in \mathbb{N}^{*}$. 

  • Nếu $x$ là số chẵn, ta suy ra $(2^{\frac{n-1}{2}}-n^{\frac{x}{2}})(2^{\frac{n-1}{2}}+n^{\frac{x}{2}})=1$. Hay $(2^{\frac{n-1}{2}}-n^{\frac{x}{2}})=(2^{\frac{n-1}{2}}+n^{\frac{x}{2}})=1\Rightarrow n^{\frac{x}{2}}=0$ (Một điều vô lý!)
  • Nếu $x$ là số chẵn thì $2^{n-1}=n^{x}+1=(n+1)\left[n^{x-1}-n^{x-2}+.....+1\right]$ suy ra $n+1$ có dạng $2^{r}$ với $r\in \mathbb{N}^{*}$ và $r<n-1$ $\Rightarrow \left\{\begin{matrix} 2^{n-1}-1=n^{x}\\ 2^{r}-1=n\end{matrix}\right.$, the0 định lý Zsigmondy dễ dàng suy ra vô lý.

Vậy nếu $n$ là snt thì $2^{n-1}-1$ có ước nguyên dương ngoài $n$.

$\star$ Nếu $n$ là hợp số, ta có thể thấy $\phi(n)>p_1-1,p_2-1,...,p_k-1$, lại the0 định lý Zsigmondy thì $2^{\phi(n)}-1$ có ước nguyên tố mà $2^{p_1-1}-1$ không có, nhưng the0 Fermat nhỏ thì $2^{p_1-1}-1\vdots p_1$ (Do $p_1$ lẻ) vậy nên $2^{\phi(n)}-1$

có ước nguyên dương khác $p_1$. Cứ tương tự như vậy ta rút ra $2^{\phi(n)}-1$

có ước nguyên dương khác $p_1,p_2,...,p_k$ và đây chính là đpcm.

Kết thúc chứng minh $\blacksquare$

-----------

Lại dùng đao to giết gà r` =,=''

bạn chứng minh định lí đó được không



#5 WhjteShadow

WhjteShadow

    Thượng úy

  • Phó Quản trị
  • 1319 Bài viết
  • Giới tính:Nam

Đã gửi 27-05-2016 - 10:26

bạn chứng minh định lí đó được không

Bạn có thể search trên mạng cũng có nhiều mà, 

http://users.ugent.b...sigmondy_en.pdf

và 

http://math.stackexc...gmondys-theorem

hầu như nó sử dụng cái cyclotomic polynomials.


$$n! \sim \sqrt{2\pi n} \left(\dfrac{n}{e}\right)^n$$

 

“We can only see a short distance ahead, but we can see plenty there that needs to be done.” - Alan Turing





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh