Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
- - - - -

$ a, b, c \ge 0 ,a+b+b=3 $. Chứng minh:


  • Please log in to reply
Chưa có bài trả lời

#1 bdtilove

bdtilove

    Hạ sĩ

  • Biên tập viên
  • 91 Bài viết
  • Giới tính:Nam

Đã gửi 29-04-2013 - 08:48

Cho các số thực $ a, b, c \ge 0 $. thỏa mãn $ a+b+c=3 $ Chứng minh rằng:

$ \frac{1}{4a^3+199}+\frac{1}{4b^3+199}+\frac{1}{4c^3+199}\ge\frac{3}{4a^2+4b^2+4c^2+191} $

đẳng thức xảy ra khi $ (a,b,c)=(1,1,1) $ và $ (a,b,c)=(2,\frac{1}{2},\frac{1}{2}) $

$ \sqrt{5a^2+3}+\sqrt{5b^2+3}+\sqrt{5c^2+3}\ge\sqrt{5a^2+5b^2+5c^2+57} $

đẳng thức xảy ra khi $ (a,b,c)=(1,1,1) $ và $ (a,b,c)=(\frac{3}{5},\frac{3}{5},\frac{9}{5}) $


Bài viết đã được chỉnh sửa nội dung bởi bdtilove: 29-04-2013 - 08:48





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh