Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

$$\sum_{k=1}^{n}\frac{k(k+1)}{2}p^{\frac{k(k-1)}{2}}\left(1-p^{k} \right)=?$$


  • Please log in to reply
Chủ đề này có 2 trả lời

#1 dark templar

dark templar

    Kael-Invoker

  • Hiệp sỹ
  • 3788 Bài viết
  • Giới tính:Nam
  • Đến từ:TPHCM
  • Sở thích:Đọc fanfiction và theo dõi DOTA chuyên nghiệp

Đã gửi 30-04-2013 - 10:59

Bài toán: Cho trước số thực $p$ thuộc $[0;1]$.Hãy tính tổng :
$$S=\sum_{k=1}^{n}\frac{k(k+1)}{2}p^{\frac{k(k-1)}{2}}\left(1-p^{k} \right)$$
 
 


"Do you still... believe in me ?" Sarah Kerrigan asked Jim Raynor - Starcraft II:Heart Of The Swarm.

#2 dark templar

dark templar

    Kael-Invoker

  • Hiệp sỹ
  • 3788 Bài viết
  • Giới tính:Nam
  • Đến từ:TPHCM
  • Sở thích:Đọc fanfiction và theo dõi DOTA chuyên nghiệp

Đã gửi 10-04-2016 - 00:07

Bài toán: Cho trước số thực $p$ thuộc $[0;1]$.Hãy tính tổng :
$$S=\sum_{k=1}^{n}\frac{k(k+1)}{2}p^{\frac{k(k-1)}{2}}\left(1-p^{k} \right)$$
 
 

 

Trường hợp $p=1$ và $p=0$ thì $S=0$,xét $p \neq 0$ và $p \neq 1$.

Để ý rằng :

$$p^{\frac{k(k-1)}{2}}(1-p^{k})=p^{\frac{k(k-1)}{2}}-p^{\frac{k(k+1)}{2}}=-\Delta p^{\frac{k(k-1)}{2}}$$

 

Nên theo SPTP thì:

$$-S=\left [ \frac{k(k+1)}{2}p^{\frac{k(k-1)}{2}} \right ]_{k=1}^{n+1}-\sum_{k=1}^{n}p^{\frac{k(k+1)}{2}}\Delta \frac{k(k+1)}{2}=\frac{(n+1)(n+2)}{2}p^{\frac{n(n+1)}{2}}-1-S_{1}$$

 

Biến đổi tổng $S_1$ như sau:

$$S_{1}=\sum_{k=1}^{n}p^{\frac{k(k+1)}{2}}\left ( \frac{(k+1)(k+2)}{2}-\frac{k(k+1)}{2} \right )=\sum_{k=1}^{n}(k+1)p^{\frac{k(k+1)}{2}}$$

 

Phân đoạn module $2$,ta sẽ có:

$$S_{1}=\sum_{i=1}^{\left \lfloor \frac{n}{2} \right \rfloor}p^{i}(2i+1)+2\sum_{j=1}^{\left \lfloor \frac{n+1}{2} \right \rfloor}p^{j}j=S_{2}+2S_{3}$$

 

Để ý rằng $\Delta p^{i}=(p-1)p^{i}$ nên:

$$S_{2}=\frac{1}{p-1}\sum_{i=1}^{\left \lfloor \frac{n}{2} \right \rfloor}\Delta p^{i}(2i+1)=\frac{1}{p-1}\left [ p^{i}(2i+1) \right ]_{i=1}^{\left \lfloor \frac{n}{2} \right \rfloor}-\frac{1}{p-1}\sum_{i=1}^{\left \lfloor \frac{n}{2} \right \rfloor}p^{i+1}\Delta (2i+1)$$

 

Do đó:

$$S_{2}=\frac{p^{\left \lfloor \frac{n}{2} \right \rfloor}(2\left \lfloor \frac{n}{2} \right \rfloor+1)-3p}{p-1}-\frac{2p}{(p-1)^{2}}\sum_{i=1}^{\left \lfloor \frac{n}{2} \right \rfloor}\Delta p^{i}$$

 

Hay:

$$S_{2}=\frac{p^{\left \lfloor \frac{n}{2} \right \rfloor}\left ( 2\left \lfloor \frac{n}{2} \right \rfloor +1 \right)-3p}{p-1}-\frac{2p^{2}(p^{\left \lfloor \frac{n}{2} \right \rfloor }-1)}{(p-1)^{2}}$$

 

Tương tự, ta có :

$$S_{3}=\frac{p^{\left \lfloor \frac{n+1}{2} \right \rfloor}\left \lfloor \frac{n+1}{2} \right \rfloor-p}{p-1}-\frac{p^{2}\left ( p^{\left \lfloor \frac{n+1}{2} \right \rfloor}-1 \right )}{(p-1)^2}$$

 

Do đó:

$$S_{1}=\frac{2\left \lfloor \frac{n}{2} \right \rfloor p^{\left \lfloor \frac{n}{2} \right \rfloor}+2\left \lfloor \frac{n+1}{2} \right \rfloor p^{\left \lfloor \frac{n+1}{2} \right \rfloor}+p^{\left \lfloor \frac{n}{2} \right \rfloor}-5p}{p-1}-\frac{2p^{2}}{(p-1)^{2}}\left ( p^{\left \lfloor \frac{n}{2} \right \rfloor}+p^{\left \lfloor \frac{n+1}{2} \right \rfloor} \right )$$

 

Vậy :

$$S=1+\frac{2\left \lfloor \frac{n}{2} \right \rfloor p^{\left \lfloor \frac{n}{2} \right \rfloor}+2\left \lfloor \frac{n+1}{2} \right \rfloor p^{\left \lfloor \frac{n+1}{2} \right \rfloor}+p^{\left \lfloor \frac{n}{2} \right \rfloor}-5p}{p-1}-\frac{2p^{2}}{(p-1)^{2}}\left ( p^{\left \lfloor \frac{n}{2} \right \rfloor}+p^{\left \lfloor \frac{n+1}{2} \right \rfloor} \right )-\frac{(n+1)(n+2)}{2}p^{\frac{n(n+1)}{2}}$$


"Do you still... believe in me ?" Sarah Kerrigan asked Jim Raynor - Starcraft II:Heart Of The Swarm.

#3 hxthanh

hxthanh

  • Thành viên
  • 3329 Bài viết
  • Giới tính:Nam

Đã gửi Hôm qua, 21:27

Kinh khủng tởm, nhìn là biết phải khai thác bằng SPTP cơ mà kỹ thuật tạo đề khét quá :P
Cuộc sống thật nhàm chán! Ngày mai của ngày hôm qua chẳng khác nào ngày hôm qua của ngày mai, cũng như ngày hôm nay vậy!




0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh