Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
- - - - -

Bất đẳng thức.

sáng tạo bằng máy vi tính.

  • Please log in to reply
Chủ đề này có 1 trả lời

#1 bdtilove

bdtilove

    Hạ sĩ

  • Biên tập viên
  • 91 Bài viết
  • Giới tính:Nam

Đã gửi 21-05-2013 - 16:42

Cho các số thực dương $ a_1, a_2, a_3,.....a_n \ge 0 $ thỏa mãn $ a^3_1+a^3_2+a^3_3+....+a^3_n=n $  Chứng minh rằng bất đẳng thức sau đây luôn đúng:

$ \sqrt{a_1+1}+\sqrt{a_2+1}+.....+\sqrt{a_n+1} \ge n-1+\sqrt{(\sqrt[3]{n}+1}) $

~O)



#2 nthoangcute

nthoangcute

    Thiếu tá

  • Thành viên
  • 2003 Bài viết
  • Giới tính:Nam
  • Đến từ:Vted.vn

Đã gửi 21-05-2013 - 19:27

Cho các số thực dương $ a_1, a_2, a_3,.....a_n \ge 0 $ thỏa mãn $ a^3_1+a^3_2+a^3_3+....+a^3_n=n $  Chứng minh rằng bất đẳng thức sau đây luôn đúng:

$ \sqrt{a_1+1}+\sqrt{a_2+1}+.....+\sqrt{a_n+1} \ge n-1+\sqrt{(\sqrt[3]{n}+1}) $

~O)

 

Bổ đề:
Với mọi $x$ thỏa mãn $0 \leq x \leq \sqrt[3]{n}$ thì:
$$f(x)=\sqrt{x+1}-\frac{\sqrt{\sqrt[3]{n}+1}-1}{n}x^3-1 \geq 0$$

Chứng minh:
$$f''(x)=-\frac{1}{4\sqrt[3]{(x+1)^2}}-\frac{6x}{\sqrt[3]{n^2}(\sqrt{\sqrt[3]{n}+1}+1)}<0$$
Suy ra $f(x) \geq 0$
Từ đó suy ra đpcm ...


Bài viết đã được chỉnh sửa nội dung bởi nthoangcute: 21-05-2013 - 19:28

BÙI THẾ VIỆT - Chuyên gia Thủ Thuật CASIO

 

Facebook : facebook.com/viet.alexander.7


Youtube : youtube.com/nthoangcute


Gmail : [email protected]


SÐT : 0965734893





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh