Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

Phương pháp phân tích thành nhân tử với 2 biến bằng CASIO


  • Please log in to reply
Chủ đề này có 23 trả lời

#21 sunwearVN

sunwearVN

    Lính mới

  • Thành viên mới
  • 2 Bài viết
  • Giới tính:Nữ

Đã gửi 09-02-2018 - 04:15

Cách nầy hay quá.

Mình không hiểu 1000 ở đâu ra?

Tại sao không phải y=800, 900 ?



#22 etucgnaohtn

etucgnaohtn

    Sĩ quan

  • Thành viên
  • 357 Bài viết
  • Giới tính:Nam
  • Sở thích:Ngắm like tăng dần

Đã gửi 10-02-2018 - 23:24

Đây là phần tiếp theo của thuật toán này, dành cho bạn đọc tham khảo thêm 
https://diendantoanh...yên-bằng-casio/


Tác giả :

 

Lương Đức Nghĩa 

 

 


#23 toanhoc2017

toanhoc2017

    Trung úy

  • Thành viên
  • 951 Bài viết

Đã gửi 12-02-2018 - 23:03

thủ thuật hay quá ,anh em nào có bài tập thì pót lên giải thử nhé 



#24 MINHMINHMATH

MINHMINHMATH

    Lính mới

  • Thành viên mới
  • 2 Bài viết

Đã gửi 28-10-2019 - 20:00

Sau đây là một thủ thuật CASIO do mình (Bùi Thế Việt) nghĩ ra, và có thể bạn cũng nghĩ ra được nó nếu bạn làm nhiều Phương Trình, Hệ Phương Trình, ...
Lưu ý: Thủ thuật này chỉ áp dụng cho biểu thức 2 ẩn bậc không quá cao (giới hạn bậc 4) cho một ẩn ...
Ví dụ như: $x^3y^3+10x^2-20xy^3+1$ vẫn nằm trong phạm vi của phương pháp này ... Do đó ứng dụng thực tiễn của phương pháp này là khá lớn, thuận tiện cho việc giải Phương trình và Hệ phương trình.
Yêu cầu: Đọc qua Thủ Thuật 1 : CÁC THỦ THUẬT CASIO
Ý tưởng: Nhận xét sơ bộ một biểu thức cần phân tích, xem bậc cái nào cao nhất, cho nó bằng $1000$ rồi phân tích
_______________________________________

Ví Dụ 1: $A=x^2+xy-2y^2+3x+36y-130$
Bước làm: 
Bước 1: Nhìn thấy bậc của $x$ và $y$ đều bằng $2$ nên mình chọn cái nào cũng được
Bước 2: Cho $y=1000$, ta được $A=x^2+1003x-1964130$
Bước 3: Phân tích nhân tử nó: $A=(x+1990)(x-987)$
Bước 4: Áp dụng thủ thuật 1, ta được: $1990=2y-10$ và $-987=-y+13$
Bước 5: Thế vào ta được $A=(x+2y-10)(x-y+13)$
Dễ không nào ???

Ví Dụ 2: $B=6x^2y-13xy^2+2y^3-18x^2+10xy-3y^2+87x-14y+15$
Bước 1: Bậc của $x$ nhỏ hơn
Bước 2: Cho $y=1000$, ta được $B=5982\,{x}^{2}-12989913\,x+1996986015$
Bước 3: Phân tích nhân tử: $B=2991\, \left( 2\,x-333 \right)  \left( x-2005 \right) $
Bước 4: Có $2991=3y-9, 333=\frac{999}{3}=\frac{y-1}{3},2005=2y+5$
Bước 5: Ta được: $B=(3y-9)(2x-\frac{y-1}{3})(x-2y-5)=(y-3)(x-2y-5)(6x-y+1)$
OK?

Ví Dụ 3: $C={x}^{3}-3\,x{y}^{2}-2\,{y}^{3}-7\,{x}^{2}+10\,xy+17\,{y}^{2}+8\,x-40\,y+16$
Bước 1: Bậc như nhau
Bước 2: Cho $y=1000$, ta được $C={x}^{3}-7\,{x}^{2}-2989992\,x-1983039984$
Bước 3: Phân tích: $C=(x-1999)(x+996)^2$
Bước 4: Thế $1999=2y-1$ và $996=y-4$
Bước 5: $C=(x-2y+1)(x+y-4)^2$

Ví Dụ 4: $D=2\,{x}^{2}{y}^{2}+{x}^{3}+2\,{y}^{3}+4\,{x}^{2}+xy+6\,{y}^{2}+3\,x+4\,y+12$
Bước 1: Bậc như nhau
Bước 2: Cho $y=1000$ ta được $D={x}^{3}+2000004\,{x}^{2}+1003\,x+2006004012$
Bước 3: Phân tích: $D=\left( x+2000004 \right)  \left( {x}^{2}+1003 \right) $
Bước 4: Thế $2000004=2y^2+4$ và $1003=y+3$
Bước 5: $D=(x^2+y+3)(2y^2+x+4)$

 

Ví Dụ 5: $E={x}^{3}y+2\,{x}^{2}{y}^{2}+6\,{x}^{3}+11\,{x}^{2}y-x{y}^{2}-6\,{x}^{2}-7\,xy-{y}^{2}-6\,x-5\,y+6$
Bước 1: Bậc của $y$ nhỏ hơn
Bước 2: Cho $x=1000$ ta được $E=1998999\,{y}^{2}+1010992995\,y+5993994006$
Bước 3: Phân tích: $E=2997\, \left( 667\,y+333333 \right)  \left( y+6 \right)$
Bước 4: "Ảo hóa" nhân tử: $E=999(2001y+999999)(y+6)$
Bước 5: Thế $999=x-1,2001=2x+1,999999=x^2-1$
Bước 6: $E=(x-1)((2x+1)y+x^2-1)(y+6)=(x-1)(y+6)(x^2+2xy+y-1)$

 

Ví Dụ 6: $F=6\,{x}^{4}y+12\,{x}^{3}{y}^{2}+5\,{x}^{3}y-5\,{x}^{2}{y}^{2}+6\,x{y}^{3}+{x}^{3}+7\,{x}^{2}y+4\,x{y}^{2}-3\,{y}^{3}-2\,{x}^{2}-8\,xy+3\,{y}^{2}-2\,x+3\,y-3$
Bước 1: Bậc $y$ nhỏ hơn
Bước 2: Cho $x=1000$ ta được: $$F=5997\,{y}^{3}+11995004003\,{y}^{2}+6005006992003\,y+997997997$$
Bước 3: Phân tích $F= \left( 1999\,y+1001001 \right)  \left( 3\,{y}^{2}+5999000\,y+997 \right) $
Bước 4: Thế $1999=2x-1;1001001=x^2+x+1;5999000=6x^2-x,997=x-3$
Bước 5: Ta được $$F=((2x-1) y+x^2+x+1)(3y^2+(6x^2-x)y+x-3)\\=\left( {x}^{2}+2\,xy+x-y+1 \right)  \left( 6\,{x}^{2}y-xy+3\,{y}^{2}+x-3 \right)$$

 

______________________________
Tạm ổn rồi, ai không hiểu gì thì cứ hỏi

cho mình hỏi bước bốn thế nào

thủ thuật thì hiểu rồi nhưng làm thế nào mà ra được y






0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh