Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
* * * * - 1 Bình chọn

CM với mỗi $\alpha>0$,số giá trị của $k$ luôn bé hơn $\frac{a_1+a_2+...+a_n}{\alpha}$


  • Please log in to reply
Chủ đề này có 3 trả lời

#1 dark templar

dark templar

    Kael-Invoker

  • Hiệp sỹ
  • 3788 Bài viết
  • Giới tính:Nam
  • Đến từ:TPHCM
  • Sở thích:Đọc fanfiction và theo dõi DOTA chuyên nghiệp

Đã gửi 13-06-2013 - 18:21

Bài toán: Cho $a_1;a_2;...;a_n$ là dãy các số nguyên không âm. Với $k=1,2,....,n$,đặt $ m_k =\max_{1\le l\le k}\frac{a_{k-l+1}+a_{k-l+2}+\cdots+a_k}{l}. $

Chứng minh rằng với mỗi $\alpha>0$,số giá trị của $k$ thỏa mãn $m_k>\alpha$ luôn bé hơn $\frac{a_1+a_2+...+a_n}{\alpha}$

 


"Do you still... believe in me ?" Sarah Kerrigan asked Jim Raynor - Starcraft II:Heart Of The Swarm.

#2 the unknown

the unknown

    Thượng sĩ

  • Thành viên
  • 208 Bài viết
  • Giới tính:Nam
  • Đến từ:Nothingness
  • Sở thích:unknown

Đã gửi 11-09-2017 - 18:39

Ta sẽ chứng minh bằng quy nạp mạnh theo $n$. Trước hết hãy cố định $\alpha$. Với $n=1$, xét 2 trường hợp:

 

Nếu $a_1>\alpha$ thì khi đó có đúng một giá trị $m_1$ thỏa $m_1>\alpha$ và do đó số giá trị này bé hơn $\frac{a_1}{\alpha}>1$.

 

Nếu $a_1\leq \alpha$ thì khi đó số giá trị $k$ thỏa $m_k>\alpha$ là $0<\frac{a_1}{\alpha}$.

 

Vậy giả thiết đúng với $n=1$, giả sử giả thiết đúng với mọi $1\leq k\leq n-1$. Ta sẽ chứng minh giả thiết đúng với $k=n$. Ta sẽ có hai trường hợp cho $m_n$ như sau:

TH1: $m_n\leq \alpha$ khi đó số giá trị $k$ ($1\leq k\leq n$) mà $m_k>\alpha$ bằng số giá trị $k$ ($1\leq k\leq n-1$) mà $m_k>\alpha$ và số giá trị này bé hơn $\frac{a_1+a_2+...+a_{n-1}}{\alpha}\leq \frac{a_1+a_2+...+a_n}{\alpha }$. (đúng)

TH2: $m_n>\alpha$ khi đó gọi $1\leq j\leq n$ là số thỏa $a_j+a_{j+1}+...+a_n>(n-j+1)\alpha$. Rõ ràng số các số $k$ ($1\leq k\leq n$) để $m_k>\alpha$ bằng tổng số các số $i$ ($1\leq i\leq j-1$) để $a_i>\alpha$ và tổng số các số $i$ ($j\leq i\leq n$) để $a_j>\alpha$. Theo giả thiết quy nạp thì tổng số các số này bé hơn

$\frac{a_1+a_2+..+a_{j-1}}{\alpha }+n-k+1< \frac{a_1+a_2+..+a_{j-1}}{\alpha }+\frac{a_j+a_{j+1}+...+a_n}{\alpha }=\frac{a_1+a_2+..+a_n}{\alpha }$ . (đúng)

 Vậy theo giả thiết quy nạp bài toán được chứng minh.


$\texttt{If you don't know where you are going, any road will get you there}$


#3 NeverDiex

NeverDiex

    Hạ sĩ

  • Thành viên
  • 61 Bài viết

Đã gửi 26-07-2019 - 09:49

Ta sẽ chứng minh bằng quy nạp mạnh theo nn. Trước hết hãy cố định αα. Với n=1n=1, xét 2 trường hợp:

 

Nếu a1>αa1>α thì khi đó có đúng một giá trị m1m1 thỏa m1>αm1>α và do đó số giá trị này bé hơn a1α>1a1α>1.

 

Nếu a1αa1≤α thì khi đó số giá trị kk thỏa mk>αmk>α là 0<a1α0<a1α.

 

Vậy giả thiết đúng với n=1n=1, giả sử giả thiết đúng với mọi 1kn11≤k≤n−1. Ta sẽ chứng minh giả thiết đúng với k=nk=n. Ta sẽ có hai trường hợp cho mnmn như sau:

TH1: mnαmn≤α khi đó số giá trị kk (1kn1≤k≤n) mà mk>αmk>α bằng số giá trị kk (1kn11≤k≤n−1) mà mk>αmk>α và số giá trị này bé hơn a1+a2+...+an1αa1+a2+...+anαa1+a2+...+an−1α≤a1+a2+...+anα. (đúng)

TH2: mn>αmn>α khi đó gọi 1jn1≤j≤n là số thỏa aj+aj+1+...+an>(nj+1)αaj+aj+1+...+an>(n−j+1)α. Rõ ràng số các số kk (1kn1≤k≤n) để mk>αmk>α bằng tổng số các số ii (1ij11≤i≤j−1) để ai>αai>α và tổng số các số ii (jinj≤i≤n) để aj>αaj>α. Theo giả thiết quy nạp thì tổng số các số này bé hơn

a1+a2+..+aj1α+nk+1<a1+a2+..+aj1α+aj+aj+1+...+anα=a1+a2+..+anαa1+a2+..+aj−1α+n−k+1<a1+a2+..+aj−1α+aj+aj+1+...+anα=a1+a2+..+anα

 

 

 

#4 Thanhlongviemtuoc

Thanhlongviemtuoc

    Hạ sĩ

  • Thành viên
  • 95 Bài viết
  • Giới tính:Nam
  • Đến từ:Nghệ An đất học
  • Sở thích:GAME, MATHS!!!!!!!

Đã gửi 26-08-2019 - 12:51

Ta sẽ chứng minh bằng quy nạp mạnh theo $n$. Trước hết hãy cố định $\alpha$. Với $n=1$, xét 2 trường hợp:

 

Nếu $a_1>\alpha$ thì khi đó có đúng một giá trị $m_1$ thỏa $m_1>\alpha$ và do đó số giá trị này bé hơn $\frac{a_1}{\alpha}>1$.

 

Nếu $a_1\leq \alpha$ thì khi đó số giá trị $k$ thỏa $m_k>\alpha$ là $0<\frac{a_1}{\alpha}$.

 

Vậy giả thiết đúng với $n=1$, giả sử giả thiết đúng với mọi $1\leq k\leq n-1$. Ta sẽ chứng minh giả thiết đúng với $k=n$. Ta sẽ có hai trường hợp cho $m_n$ như sau:

TH1: $m_n\leq \alpha$ khi đó số giá trị $k$ ($1\leq k\leq n$) mà $m_k>\alpha$ bằng số giá trị $k$ ($1\leq k\leq n-1$) mà $m_k>\alpha$ và số giá trị này bé hơn $\frac{a_1+a_2+...+a_{n-1}}{\alpha}\leq \frac{a_1+a_2+...+a_n}{\alpha }$. (đúng)

TH2: $m_n>\alpha$ khi đó gọi $1\leq j\leq n$ là số thỏa $a_j+a_{j+1}+...+a_n>(n-j+1)\alpha$. Rõ ràng số các số $k$ ($1\leq k\leq n$) để $m_k>\alpha$ bằng tổng số các số $i$ ($1\leq i\leq j-1$) để $a_i>\alpha$ và tổng số các số $i$ ($j\leq i\leq n$) để $a_j>\alpha$. Theo giả thiết quy nạp thì tổng số các số này bé hơn

$\frac{a_1+a_2+..+a_{j-1}}{\alpha }+n-k+1< \frac{a_1+a_2+..+a_{j-1}}{\alpha }+\frac{a_j+a_{j+1}+...+a_n}{\alpha }=\frac{a_1+a_2+..+a_n}{\alpha }$ . (đúng)

 Vậy theo giả thiết quy nạp bài toán được chứng minh.

Ta sẽ chứng minh bằng quy nạp mạnh theo $n$. Trước hết hãy cố định $\alpha$. Với $n=1$, xét 2 trường hợp:

 

Nếu $a_1>\alpha$ thì khi đó có đúng một giá trị $m_1$ thỏa $m_1>\alpha$ và do đó số giá trị này bé hơn $\frac{a_1}{\alpha}>1$.

 

Nếu $a_1\leq \alpha$ thì khi đó số giá trị $k$ thỏa $m_k>\alpha$ là $0<\frac{a_1}{\alpha}$.

 

Vậy giả thiết đúng với $n=1$, giả sử giả thiết đúng với mọi $1\leq k\leq n-1$. Ta sẽ chứng minh giả thiết đúng với $k=n$. Ta sẽ có hai trường hợp cho $m_n$ như sau:

TH1: $m_n\leq \alpha$ khi đó số giá trị $k$ ($1\leq k\leq n$) mà $m_k>\alpha$ bằng số giá trị $k$ ($1\leq k\leq n-1$) mà $m_k>\alpha$ và số giá trị này bé hơn $\frac{a_1+a_2+...+a_{n-1}}{\alpha}\leq \frac{a_1+a_2+...+a_n}{\alpha }$. (đúng)

TH2: $m_n>\alpha$ khi đó gọi $1\leq j\leq n$ là số thỏa $a_j+a_{j+1}+...+a_n>(n-j+1)\alpha$. Rõ ràng số các số $k$ ($1\leq k\leq n$) để $m_k>\alpha$ bằng tổng số các số $i$ ($1\leq i\leq j-1$) để $a_i>\alpha$ và tổng số các số $i$ ($j\leq i\leq n$) để $a_j>\alpha$. Theo giả thiết quy nạp thì tổng số các số này bé hơn

$\frac{a_1+a_2+..+a_{j-1}}{\alpha }+n-k+1< \frac{a_1+a_2+..+a_{j-1}}{\alpha }+\frac{a_j+a_{j+1}+...+a_n}{\alpha }=\frac{a_1+a_2+..+a_n}{\alpha }$ . (đúng)

 Vậy theo giả thiết quy nạp bài toán được chứng minh.






1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh