Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Ban Biên Tập

Đăng ký: 01-01-2012
Offline Đăng nhập: 01-08-2013 - 22:35
****-

Chủ đề của tôi gửi

Thứ Sáu ngày 13 dưới góc nhìn toán học và văn hóa

13-11-2015 - 16:53

Ở một số nước phương Tây, người ta cho rằng thứ sáu ngày 13 là ngày rủi ro. Tuy nhiên, báo Le Figaro (Pháp) số ra ngày 11-3-2009 cho biết số người mua lô tô tại Pháp vào thứ sáu ngày 13 cao gấp 3 lần so với những ngày khác.

 

 

File gửi kèm  Fri13.jpg   74.51K   55 Số lần tải

 

 

Vậy thứ sáu ngày 13 có đặc điểm gì về mặt toán học và văn hóa? Nó là ngày tốt hay xấu?
Bằng lý thuyết đồng dư, toán học chứng minh được một năm bất kỳ có ít nhất một thứ sáu ngày 13 và nhiều nhất ba thứ sáu ngày 13. Hơn nữa, một năm có ba thứ sáu ngày 13 khi và chỉ khi ngày đầu năm là thứ năm (đối với năm không nhuận) hoặc chủ nhật (đối với năm nhuận). Đó là trường hợp của năm 2009: có ba thứ sáu ngày 13 rơi vào tháng hai, tháng ba và tháng mười một. Sự kiện này đã xảy ra vào năm 1998 và sẽ lặp lại vào các năm 2015, 2026.

 

Năm 2010 và 2011 chỉ có một thứ sáu ngày 13 mỗi năm. Năm 2012 có ba thứ sáu ngày 13 rơi vào tháng giêng, tháng tư và tháng bảy. Bộ ba “giêng, tư, bảy” này ít gặp hơn so với bộ ba “hai, ba, mười một”. Năm 2013 có hai thứ sáu ngày 13 rơi vào tháng 9 và tháng 12. Tổng cộng có 21 thứ sáu ngày 13 từ 2009 - 2019.

 

Cũng bằng toán học, ta tính được khoảng cách giữa hai ngày thứ sáu 13 gần nhất chỉ có thể là 27, 90, 181, 244, 272, 335 hoặc 426 ngày. Như vậy, hai thứ sáu ngày 13 gần nhất có thể cách nhau hơn một năm. Đó chính là trường hợp 13-8-1999 và 13-10-2000.

 

Theo Kinh Thánh, Chúa Jésus bị đóng đinh trên thập tự giá vào thứ sáu. Hơn nữa, bữa ăn cuối cùng của Chúa với các môn đồ có đúng 13 người. Việc này thường được xem là nguồn gốc việc kiêng sợ thứ sáu ngày 13.

 

 

 

 

File gửi kèm  lastsupperdavinci.jpg   38.19K   51 Số lần tải

Kiệt tác Bữa tiệc cuối cùng của Léonardo da Vinci

 

 

Ở Ý, số 17 được gắn với sự rủi ro chứ không phải số 13. Còn ở Trung Quốc, con số này là 4 vì được phát âm gần giống với “tử” nghĩa là chết. Ở châu Mỹ Latin, ngày kiêng cữ lại là thứ ba 13.

 

 

Về mặt thống kê, hiện chưa có dữ liệu đáng tin cậy nào để gán cho thứ sáu ngày 13 với “may mắn” hay “rủi ro” theo một nghĩa nào đó. Chẳng hạn, xác suất trúng lô tô ở Pháp vào thứ sáu ngày 13 cũng giống với những ngày khác và xấp xỉ với 1/14.000.000. Xác suất nhỏ bé này không có nghĩa là bạn không thể trúng lô tô và không hề ngăn cản người chơi lô tô nuôi hi vọng!

 

VMF


Chúc mừng ngày 20/11/2013

19-11-2013 - 12:08

Topic này dùng để các mem gửi lời chúc đến các thầy cô nhân ngày 20/11


a

Brachistochrone – Đường đoản thời của John Bernoulli

21-01-2013 - 20:51

Rất có thể tiêu đề bài viết này đã làm bạn cảm thấy có đôi chút sợ hãi. Ấy vậy mà tôi dám cá rằng các bạn sắp được xem sau đây một trong những chứng minh toán học tuyệt diệu và đặc biệt nhất… Một trong những nguyên lý đẹp nhất của cơ học cổ điển là: Nguyên lý tác dụng tối thiểu. Mà nếu nói một cách nôm na là ” tự nhiên luôn thực hiện mọi việc một cách hết sức tiết kiệm và dè sẻn“. Nói riêng khi ta xét đến hành trình của một tia sáng, nó luôn luôn chọn con đường nào có thời gian đi ngắn nhất. Bây giờ tôi xin được giới thiệu một bài toán cũng tìm con đường đi có thời gian ngắn nhất, chỉ khác một điều: đó không phải là một bài toán quang học nữa, mà lại thuần túy là một bài toán cơ học!

Vào tháng 6 năm 1696, John Bernouilli gửi một lời thách thức đến cho toàn giới Toán học thời bấy giờ (chủ yếu là gửi đến ông anh trai James Bernouilli ) bằng bài toán sau đây:

“Tìm đường cong nối 2 điểm A và B ( trong đó B nằm thấp hơn A và cả hai không cùng nằm trên đường thẳng đứng) sao cho một chất điểm chuyển động không ma sát dưới tác động của trọng lực khởi đầu từ A dọc theo đường cong đó sẽ đến B sớm nhất?”.

Nói cho dễ hiểu là bạn phải làm cái máng trượt có hình thù thế nào để hòn bi lăn đến đích sớm nhất.
Hình đã gửi
Lần này chắc các bạn không nghĩ quỹ đạo cần tìm là đoạn thẳng nối 2 điểm A, B nữa chứ ? Thật ra thì bài toán này không phải là mới. Trong một cuốn sách của mình xuất bản 1638, Galileo cũng đã đề cập đến bài toán này và chứng minh được rằng quỹ đạo là cung tròn thì nhanh hơn quỹ đạo thẳng. Tuy vậy sự lựa chọn đường đi là cung tròn của ông không phải là lời giải đúng.
Hình đã gửi
Về phần mình, John Bernouilli đã đặt tên cho đường cong ngắn nhất đó là ‘Brachistochrone’, mà ông đã nối với nhau hai từ Hi Lạp: ‘Brachistos’ nghĩa là ngắn nhất và ‘chronos’ nghĩa là thời gian. Một cách ‘Việt Nam’ chúng ta có thể gọi nó là ‘đường đoản thời’. Như ta đã biết: trong toán học một hàm số có đồ thị là một đường cong nào đó, và ngược lại nói chung mỗi đường cong sẽ có thể là đồ thị của một hàm số nào đó. Thay vì tìm đường cong, chúng ta sẽ tìm hàm số nhận nó làm đồ thị. Đầu tiên chúng ta đặt đường cong nối từ A đến B vào một hệ tọa độ nhận A làm gốc với trục tung hướng thẳng đứng xuống dưới như sau:
Hình đã gửi
Vì chất điểm chuyển động dưới tác dụng của trọng lực nên ta ‘dễ dàng’ xác định được vận tốc của chất điểm tại điểm C có tung độ $y$ nào đó sẽ là: $v=\sqrt{2gy}$. Xin các bạn yên tâm là tôi sẽ không bắt chước theo các giảng viên đại học bây giờ với các điệp khúc: ” Ồ! dễ thấy rằng… hay không mấy khó khăn ta sẽ…”. Thật ra nhờ đi dạy mà tôi biết rằng trong các trường hợp mà Thầy giáo còn ’khó thấy’ thì dễ dàng nhất là cứ nói: “dễ thấy rằng…” Ngụ ý: chỉ có khờ mới không thấy, mà cuộc đời đâu có ai chịu nhận mình khờ …Trở lại vấn đề, vận tốc tại điểm C có tung độ $y$ sẽ được tìm ra bằng định luật bảo toàn cơ năng (chú ý rằng giả thiết bài toán đã bỏ qua ma sát nên cơ năng bảo toàn):

Đầu tiên để cho đơn giản ta sẽ chọn gốc thế năng tại điểm C. Vì tại A vật không có vận tốc đầu nên cơ năng sẽ chỉ gồm thế năng tại đó: $E=mgy$ (ở đây thế năng sẽ được tính theo độ cao tính từ điểm A xuống gốc thế năng C (tưởng tượng như là mặt đất), mà độ cao này lại chính là $y$. Mặt khác cơ năng tại C chỉ bao gồm động năng ( C là gốc nên thế năng bằng 0): $E=\frac{1}{2}mv^2$. Do cơ năng bảo toàn nên ta có:
$$\frac{1}{2}mv^2 = mgy \Rightarrow v^2 = 2gy \Rightarrow v = \sqrt{2gy}$$
Vận tốc này không hề phụ thuộc vào quỹ đạo của đường cong mà chỉ phụ thuộc vào tung độ y của điểm C đang xét. Và đến đây là điểm quan trọng nhất: Chúng ta chia mặt phẳng chứa đường đi của chất điểm thành vô số những dải lớp mỏng nằm ngang.
Hình đã gửi
Chất điểm sẽ lần lượt đi qua hết lớp này đến lớp khác. Và như trên đã nói vận tốc của nó không phụ thuộc vào quỹ đạo đường đi mà chỉ phụ thuộc vào dải lớp mà nó đi qua ( phụ thuộc vào tung độ y)…Các bạn đã thấy tình huống này ở đâu đó chưa? Đúng vậy! Ánh sáng cũng đã gặp tình huống này khi nó đi từ môi trường không khí vào môi trường nước, hai môi trường mà ở trong đó nó chuyển động với vận tốc khác nhau. Và bởi vì ánh sáng luôn đi theo con đường nhanh nhất nên chúng ta sẽ khôn ngoan đi theo ánh sáng, tức là tuân theo định luật khúc xạ. Bài toán cơ học lúc đầu đã bị chuyển thành một bài toán quang học mất rồi! Thật là một ý tưởng tuyệt diệu.

Trên cơ sở đó chúng ta sẽ nhìn bài toán ban đầu trong một bối cảnh khác: ở đó, có một tia sáng muốn đi từ A đến B. Nó phải đi qua một môi trường biến đổi liên tục mà vận tốc của nó thay đổi theo công thức $v=\sqrt{2gy}$. Vậy nó sẽ đi theo đường nào? Và tất nhiên con đường mà ánh sáng sẽ đi chính là con đường ta cần tìm. Đến đây, dù rằng vẫn còn nhiều việc phải làm nhưng bài toán mới này đã đơn giản hơn bài toán ban đầu biết dường nào rồi!

Gọi $v, v', v'', v''', ...$ lần lượt là vận tốc của ánh sáng trong từng lớp liên tiếp, và $\alpha, \alpha ', \alpha '', \alpha ''', ...$ là các góc tới tương ứng của tia sáng khi đến gặp các mặt phân cách (góc tạo bởi tia sáng với trục thẳng đứng). Theo định luật khúc xạ ánh sáng ta có:
$$\frac{sin\alpha}{v} =\frac{sin\alpha '}{v'} = \frac{sin\alpha''}{v''} = \frac{sin\alpha'''}{v'''} = ...$$
Và bởi vì $v$ nhận các giá trị liên tục theo độ sâu (cũng có nghĩa là các dải lớp môi trường của ta có thể cho mỏng đi một cách tùy ý) ta sẽ có: $\frac{sin\alpha}{v} = const \textbf{ (*)}$ dọc theo đường đi của ánh sáng.

Tiếp theo sẽ là một điểm khá tinh tế (dù không khó khăn để tưởng tượng). Đối với các lớp chúng ta đang xét, chẳng hạn lớp trên cùng có vận tốc $v$, mình sẽ cho bề dày của lớp này tiến dần về 0:

Hình đã gửi
Có nghĩa là cho điểm $P$ tiến dần về điểm $R$, lúc này đoạn $PR$ sẽ tiến dần tới tiếp tuyến của đường cong. Như vậy góc $\alpha$ thực chất sẽ là góc tạo bởi tiếp tuyến của đường cong tại $R$ và trục thẳng đứng.
Hình đã gửi
Ta gọi $\beta$ là góc tạo bởi tiếp tuyến tại $R$ và trục nằm ngang. Mọi người học lớp 7 rồi chắc là còn nhớ $\tan\beta$ chính là hệ số góc của tiếp tuyến của đường cong tại $R$. Mặt khác, nếu bạn đã học lớp 11 rồi thì sẽ biết luôn rằng hệ số góc của tiếp tuyến thì bằng với đạo hàm của hàm số tại đó, tức là: $\tan\beta = y'$. Mặt khác, hiển nhiên là:
$$\alpha + \beta = 90^o \Rightarrow \sin \alpha = \cos \beta = \frac{1}{\sqrt{1+y'^2}}$$.
Cái này được suy ra từ công thức lượng giác cơ bản: $1 + \tan^2\beta = \frac{1}{\cos^2\beta}$. Kết hợp với $(*)$ và và nhớ lại rằng $v = \sqrt{2gy}$ ta được:
$$const = \frac{\sin \alpha}{v} = \frac{1}{\sqrt{1+y'^2}\sqrt{2gy}} \Rightarrow y(1+y'^2) = const = c$$
Cuối cùng thì ta cũng đi đến được phương trình này (là phương trình mà hàm số $y$ của chúng ta phải thõa mãn):
$$y(1+y'^2) = c \textbf{ (**)}$$
Bấy lâu nay mọi người vẫn thường nói: “Toán học là ông hoàng mà cũng là người đầy tớ của khoa học”. Các bạn có biết vì sao không? Là ông hoàng thì xin không giải thích thêm, còn làm “đầy tớ” thì đây là một minh chứng rõ nét. Vật lý chỉ cần dựa vào lý thuyết của mình rút ra phương trình mà đại lượng nào đó phải thõa mãn. Công việc còn lại giao cho toán học xử lý, nó sẽ giải và tìm xem hàm số ấy là gì?

Tất nhiên phương trình $(**)$ là một phương trình vi phân và ẩn của nó làm một hàm số (hàm số chúng ta cần tìm). Nhiều bạn học sinh vẫn chưa biết giải thì cũng đừng bận tâm, vì nói cho cùng thì những phương trình như vậy đều đã có cách giải sẵn. Và thậm chí bạn có thể tìm ra nghiệm của nó chỉ với một phần mềm tính toán mạnh (Maple chẳng hạn). Hàm số tìm được có đồ thị là một đường cong với tên gọi: Cycloid. Tôi xin phép chỉ mô ta đường cong này một chút mà không viết ra đây công thức hàm số chúng ta tìm được. Nó cũng không hẳn phức tạp, chỉ là nó được viết dưới dạng tham số, mà tôi không muốn bài viết của mình dài thêm nữa.

Cùng tìm hiểu một chút về đường cong Cycloid, bạn có thể dễ dàng tưởng tượng ra hình ảnh của nó. Thật vậy, hãy gắn một điểm sáng vào một cái bánh xe đạp rồi lăn nó đi trong bóng tối. Quỹ đạo của điểm sáng đó cũng chính là hình ảnh của đường cong Cycloid.
Hình đã gửi
Và bây giờ là lúc ta tận hưởng thành quả: Đây là tính toán mô phỏng chuyển động của chất điểm theo những quỹ đạo khác nhau. Các bạn hãy xem:
Hình đã gửi
Các bạn chắc biết đâu là đường Cycloid của mình rồi chứ? Lời cuối cùng xin cảm ơn John Bernouilli với chứng minh tuyệt diệu này. Tôi sẽ không quá cường điệu khi nói rằng việc tìm ra chứng minh đó là một nghệ thuật! Chúng ta đã trải qua hai ’ngữ cảnh’ rất khác nhau: Đầu tiên là cơ học, rồi thoắt một cái nó biến thành bài toán quang học. Và quả thật các bạn đã thấy ở đâu một sự liên hệ độc đáo và thú vị đến như vậy hay chưa?

Theo Ngô Minh Đức

Hình học Tĩnh và động

27-11-2012 - 22:28

HÌNH HỌC TĨNH VÀ ĐỘNG

Lê Bá Khánh Trình (Đại học KHTN, ĐHQG Tp. Hồ Chí Minh)

1. HÌNH HỌC TĨNH HAY ĐỘNG

Trong bài này, tôi muốn trình bày một đôi điều riêng tư về môn hình học phổ thông (hay còn được gọi là hình học sơ cấp) dưới hai cách nhìn có phần nào khác biệt nhau. Trước hết, thông dụng hơn cả là cách nhìn của một người quan tâm đến việc giải các bài toán hình học. Cách nhìn này thường yêu cầu xem xét, phân loại các bài toán khác nhau, trình bày kinh nghiệm giải quyết chúng và tìm ra các mối liên quan giữa chúng với các bài toán đã biết. Cách nhìn này thường được quan tâm hàng đầu và thường là nội dung chính trong các bài viết, các tài liệu về toán phổ thông. Bên cạnh đó, tôi cũng muốn trình bày các vấn đề ở đây dưới một cách nhìn khác, cách nhìn của người muốn tìm tòi, phát hiện ra các bài toán mới, những bài toán không chỉ mới về nội dung mà còn có tác dụng tích cực trong việc rèn luyện tư duy và các kỹ năng cần thiết của người học, đặc biệt là đối với những học sinh giỏi. Đây là công việc đòi hỏi ở chúng ta nhiều công phu không kém gì công việc giải quyết các bài toán. Tuy nhiên, ở nước ta dường như công việc này còn chưa được quan tâm đúng mức. Đây đó, được ưa chuộng hơn cả vẫn là sử dụng các bài toán hay, mẫu mực đã có hoặc tận dụng các đề toán mới được công bố ở các nước khác. Cách làm này khá tiện lợi, hợp lý và hiệu quả nhưng thực tế có hai nguy cơ:
∙ Một là, nếu sử dụng các bài toán đã được công bố trong các kỳ thi, việc đánh giá sẽ thiếu công bằng và chính xác;
∙ Hai là, đáp án của nhiều bài toán do vô tình hay hữu ý, đã ít nhiều bị biến dạng. Điều này có thể làm cho cách trình bày trở nên ngắn gọn hơn nhưng đồng thời cũng đã làm mất đi những ý tưởng trong sáng và tự nhiên ban đầu khi những bài toán đó được xây dựng nên. Vì thế, nếu sử dụng lại các đáp án một cách máy móc, thiếu sự biên tập cần thiết thì rất có thể chúng sẽ có tác dụng tiêu cực đến việc rèn luyện tư duy của người học.

Với những suy nghĩ đó, tôi nghĩ chắc cũng đã đến lúc chúng ta cần tăng cường sự quan tâm và đầu tư nhiều công sức hơn nữa cho công việc “sáng tác” này. Một công việc không dễ dàng nhưng chắc chắn sẽ rất thú vị và bổ ích. Bây giờ, đã đến lúc đi thẳng vào chủ đề của bài này: Hình học tĩnh hay động? Nếu chỉ nhìn các bài toán mà chúng ta vẫn thường giải quyết hoặc tìm tòi thì hình học vừa tĩnh lại vừa động. Hình học tĩnh trong những bài toán mà ở đó, các yếu tố như điểm, đường thẳng, đường tròn,... đều không thay đổi và yêu cầu đặt ra ở đây thường là chứng minh các tính chất hình học hoặc tính toán các đại lượng nào đó trong hình vẽ đã cho. Còn hình học sẽ động trong những bài toán mà ở đó, bên cạnh các yếu tố cố định, không thay đổi có 1 vài yếu tố thay đổi và yêu cầu ở đây thường là tìm quĩ tích, tìm các điểm cố định hoặc tìm giá trị lớn nhất, nhỏ nhất của một đại lượng hình học. Tuy nhiên, đây chỉ là cái nhìn ban đầu. Trên quan điểm của những người mong muốn đi tìm lời giải cho các bài toán khó và cả trên quan điểm của những người mong muốn phát hiện ra những bài toán hình học mới, theo tôi, hình học luôn luôn cần vận động, vận động ngay cả trong những bài toán mà các yếu tố được cho đều cố định, không đổi. Bởi vì chính cách nhìn, cách tư duy trong các yếu tố của hình vẽ không ngừng biến động, tuơng tác, thậm chí toàn bộ cả hình vẽ đều không thay đổi sẽ giúp chúng ta tìm ra đúng những lời giải đẹp nhất và phản ánh trọn vẹn nhất bản chất hình học của một bài toán.




2. ĐỘNG TRONG BIẾN HÌNH

Một trong những công cụ quan trọng hàng đầu để thực hiện việc biến đổi các yếu tố trong một hình chính là phép biến hình. Không phải ngẫu nhiên mà hiện nay, những lời giải hay nhất của nhiều bài toán hình học cũng như rất nhiều phát hiện hình học thú vị thường nhận được trên cơ sở vận động ý tưởng và kỹ thuật của các phép biến hình.

Thế nhưng để có thể vận dụng chúng một cách hiệu quả, trước hết phải có được một nền tảng tương đối vững chắc về biến hình mà cụ thể là phải nắm bắt được một vài mệnh đề quan trọng và làm quen được với một số tình huống tiêu biểu cho việc thực hiện các động tác biến hình hợp lý.

Vậy đó là những mệnh đề nào, những tình huống nào? Trong khuôn khổ bài này, tôi chỉ xin phép trình bày những gì liên quan đến phép quay, một loại phép biến hình tuy đơn giản nhưng lại có mức độ áp dụng cao và mang lại rất nhiều kết quả phong phú. Tương tự, không khác biệt với phép quay bao nhiêu là phép vị tự quay. Thông thường, phép vị tự quay đem lại các kết quả tổng quát hơn và nâng cao độ phức tạp của bài toán mà vẫn giữ nguyên ý tưởng ban đầu của phép quay.

Nhưng trước khi phát biểu ra đây các mệnh đề, tình huống cần thiết được nhắc ở trên, xin phép được nói qua một chút cái gọi là “cảm hứng” thúc đẩy tôi viết ra những dòng này. “Cảm hứng” đó nảy sinh từ việc xem xét giáo trình Hình học nâng cao lớp 11 vừa được đưa vào giảng dạy từ vài năm học vừa qua, trong đó điểm đáng lưu ý nhất là phần các phép biến hình được trình bày đầy đủ hơn và đặc biệt là đã được phân bố ngay vào đầu năm học (trước đây, phần này chỉ được giảng dạy vào cuối năm lớp 10). Rõ ràng, với sự thay đổi này, hội đồng biên soạn sách giáo khoa cho thấy ý định rất nghiêm túc của mình là tăng cường hơn nữa sự chú ý cho phần các phép biến hình và đây thực sự là điều rất nên làm.

Các phép biến hình chính là mảng kiến thức mà ở đó, học sinh có thể làm được với những ý tưởng và những kỹ năng thích hợp nhất cho việc tiếp thu các kiến thức của toán học hiện đại. Những ý tưởng và những kỹ năng đó là gì? Đó là ý tưởng ánh xạ rất rõ nét trong cách trình bày và hệ thống các phép biến hình. Đó là ý tưởng phân loại và mô tả đầy đủ các lớp phép biến hình (mà tiêu biểu nhất là các phép dời hình). Và tất nhiên, quan trọng hơn cả là qua việc vận dụng các phép biến hình để giải toán, tư duy hình học của học sinh sẽ được nâng lên ở một cấp độ mới. Thay vì chỉ biết tính toán và so sánh các đại lượng hình học (góc, độ dài, diện tích,... ) để từ đó đi đến một chứng minh như trước đây, nay với việc sử dụng các phép biến hình, các em sẽ được tập quan sát những vận động, những tương tác giữa các yếu tố, những cấu trúc tiềm ẩn trong một hình vẽ để rồi từ đó rút ra được những chứng minh, những kết luận sâu sắc, nêu bật toàn diện bản chất của hình vẽ đó.

Những ý định như vậy là rất đúng đắn và chắc cũng đã được hội đồng biên soạn sách giáo khoa đem ra cân nhắc kỹ lưỡng trước khi quyết định việc phân bố lại chương trình sách giáo khoa nâng cao về hình học. Chỉ tiếc một điều, theo nhận xét chủ quan của tôi, là nội dung trình bày trong sách giáo khoa lớp 11 có lẽ vẫn còn chưa đủ để học sinh rèn luyện, nắm bắt và vận dụng công cụ biến hình ở mức độ cần thiết, ít ra là chưa cho phép các em làm quen được với ba ý tưởng quan trọng và bổ ích được kể ra ở trên.
Vậy nên cần bổ sung những điều gì? Xin điểm qua một vài điều tôi cho là quan trọng nhất và nhân tiện, đây cũng chính là trả lời cho câu hỏi đặt ra ở đầu phần này. Đó là phát biểu các mệnh đề, các tình huống chính mà bất cứ ai khi học các phép toán biến hình (cụ thể là phép quay) đều phải biết để có thể vận dụng thực sự tốt công cụ này.

2.1. Sự tồn tại của phép quay. Trước hết, để giúp cho học sinh hiểu rõ và tự tin hơn khi sử dụng các phép biến hình, nên trang bị cho các em các mệnh đề về tồn tại duy nhất của một phép biến hình trong những tình huống đơn giản và thông dụng nhất. Đối với phép quay, mệnh đề sau đáp ứng đủ các yêu cầu đó.

Mệnh đề 2.1. Cho hai đoạn thẳng $AB$ và $A'B'$ sao cho $AB = A'B'$ và $\overrightarrow{AB}\neq \overrightarrow{A'B'}$ Lúc đó, tồn tại duy nhất một phép quay $R$ biến tương ứng $AB$ thành $A'B'$.


File gửi kèm  phepquay1.png   12.84K   140 Số lần tải


Mệnh đề này cho phép ta chỉ cần quan sát thấy có hai đoạn thẳng bằng nhau là có thể liên tưởng ngay đến một phép quay và sẵn sàng vận dụng nó nếu có thêm các điều kiện thích hợp chứ không phải chờ đến khi có được hai tam giác, hai hình bằng nhau mới bắt đầu nghĩ đến phép quay. Ngoài ra, mệnh đề này còn là cơ sở để mô tả đầy đủ các phép dời hình (sẽ đề cập ở dưới). Tuy nhiên, nó chỉ có ý nghĩa giúp ta làm quen với tình huống. Muốn mang lại hiệu quả thực sự phải bổ sung thêm một ít về việc xác định phép quay tồn tại nói trên.

Mệnh đề 2.2 (Mệnh đề 1 bổ sung). Phép quay $R$ có góc quay $\alpha = (\overrightarrow{AB}, \overrightarrow{A'B'})$ và tâm $O$ đồng thời nằm trên các trung trực của $AA',BB'$ cũng như các cung tròn (đơn) chứa các điểm nhìn đoạn $AA',BB'$ dưới một góc có hướng bằng $\alpha$.


Bổ sung này cho ta một cái nhìn khá toàn diện về tình huống đang xét (xem hình vẽ); nhưng để có được sự quan sát đầy đặn và sâu sắc hơn nữa, cần trang bị thêm:

Mệnh đề 2.3. Ta giữ các giả thiết như trong các Mệnh đề 1 và 2.
(1) Giả sử các đường thằng $AB$ và $A'B'$ cắt nhau tại điểm $P$. Khi đó, các tứ giác
$AA'OP$ và $BB'OP$ nội tiếp;
(2) Giả sử các đường thẳng $AA'$ và $BB'$ cắt nhau tại điểm $Q$. Khi đó, các tứ giác
$ABOQ$ và $A'B'OQ$ nội tiếp.

Các mệnh đề này rõ ràng là chứng minh không khó (nên xin bỏ qua ở đây). Còn lợi ích mà chúng có thể mang lại thì lại khá phong phú. Xin bắt đầu bằng một bài tập khá quen thuộc trong đó việc vận dụng ý tưởng biến hình là rất tự nhiên và đơn giản.

Ví dụ 2.4. Cho tam giác $ABC$ cân tại $A$. Trên cạnh $AB$ và $AC$ lần lượt lấy các điểm
$M, N$ sao cho $AM = CN$. Chứng minh đường tròn ngoại tiếp tam giác $AMN$ luôn đi qua một điểm cố định khác $A$.


File gửi kèm  PHEPQUAY2.png   15.46K   137 Số lần tải


Lời giải. Để giải, ta xét phép quay $R$ biến đọan thẳng $AM$ tương ứng thành đoạn thẳng $CN$.
Tâm quay $O$ theo mệnh đề 2 là giao điểm của trung trực $AC$ và cung tròn quĩ tích những điểm $K$ sao cho:

$$\left (\overrightarrow{KA}, \overrightarrow{KC} \right ) = \left (\overrightarrow{AM}, \overrightarrow{CN} \right )$$

nên tâm quay $O$ cố định.
Cuối cùng, do $AM$ và $CN$ cắt nhau tại $A$ nên theo Mệnh đề 3, tứ giác $MNAO$ nội tiếp. Vậy đường tròn ngoại tiếp tam giác $AMN$ đi qua điểm $O$ cố định.

Bài tập này rất thích hợp cho việc làm quen với các ứng dụng của phép quay. Nó chỉ có một khiếm khuyết là nếu tam giác $ABC$ cân thì điểm $O$ cần tìm chính là tâm đường tròn ngoại tiếp tam giác $ABC$. Do đó, nhiều học sinh có thể mày mò, dự đoán và chứng minh kết quả trên mà không cần sử dụng phép quay. Thực ra, để khắc phục điều này, có thể xem tam giác $ABC$ không cân và còn tổng quát hơn là bài tập sau mà cách giải không có gì thay đổi.

Ví dụ 2.5. Trên 2 tia $Ox$ và $Oy$ của góc $Oxy$, cho 2 điểm $A,B$. Gọi $M,N$ là 2 điểm thay đổi trên $Ox, Oy$ sao cho $AM=BN$ ($M$ khác phía $O$ đối với điểm $A$, còn $N$ cùng phía $O$ đối với điểm $B$). Chứng minh rằng đường tròn ngoại tiếp tam giác $OMN$ luôn đi qua một điểm cố định khác $O$


File gửi kèm  PHEPQUAY3.png   10.47K   127 Số lần tải


Nếu bổ sung vào bài tập này thêm một vài yếu tố với những mối quan hệ tương tự (chẳng hạn lấy thêm các điểm $P,Q$ trên $Ox,Oy$ cũng với tính chất $AP=BQ$ để phép quay được xét cũng biến $P$ thành $Q$) và thay đổi chút ít cách phát biểu cũng như vận dụng tính chất còn lại (tính chất 2) của Mệnh đề 3. Ta nhận được:

Bài toán. Cho tứ giác $ABC$ có $AB=CD$ và các điểm $M,N$ trên $AB,CD$ sao cho $AM=DN$. Giả sử đường thẳng $MN$ cắt $AD$ và $BC$ lần lượt tại $P,Q$. Chứng minh rằng tồn tại một điểm $O$ có cùng phương tích với tất cả bốn đường tròn ngoại tiếp các tam giác $PAM,PDN,QBM,QCN$


File gửi kèm  phepquay4.png   9K   111 Số lần tải


Lời giải. Gọi $O$ là tâm của phép quay $R$ biến $AB$ tương ứng thành $CD$ và $M$ thành $N$. Theo mệnh đề 3 (tính chất 2), các tứ giác $AMOP,ANOP,BMOQ,CNOQ$ đều nội tiếp. Vậy $O$ nằm trên bốn đường tròn nội tiếp các tam giác $PAM,PDN,QBM,QCN$
nên $O$ có cùng phương tích đối với các đường tròn này.

2.2. Tích của hai phép quay. Điều cần bổ sung thứ hai liên quan đến bản chất ánh xạ của các phép biến hình. Một khi đã định nghĩa chúng như các ánh xạ thì lẽ tự nhiên cũng cần phải đề cập đến tích của hai phép biến hình. Vậy tích của hai phép quay là gì?

Mệnh đề 2.6. Cho hai phép quay $R(O_1; \alpha _1), R(O_2; \alpha _ 2)$. Nếu $\alpha _1 + \alpha _2 = 2k\pi$ thì tích $R = R_2.R_1$ cũng là một phép quay với góc quay $\alpha = \alpha _1 + \alpha _2$. Tâm $O$ của phép quay này được xác định từ điều kiện sau
$$\left (\overrightarrow{O_1O}, \overrightarrow{O_1O_2} \right ) = \frac{\alpha_1}{2};\left (\overrightarrow{O_2O_1}, \overrightarrow{O_2O} \right ) = \frac{\alpha_2}{2}$$


File gửi kèm  phepquay5.png   8.13K   115 Số lần tải


Chứng minh. Việc $R$ là một phép quay có thể suy ra ngay từ Mệnh đề 1. Còn tâm $O$ chính là điểm bất động duy nhất qua tích
$R = R_2.R_1$ nên nếu chọn $O$ như trên
và lấy $O’$ đối xứng với $O$ qua $O_1O_2$ thì ta
có $R_1(O)=O’$ và $R_2(O’) = O$. Suy ra
$R(O) = O$. Vậy điểm $O$ xác định với điều kiện trên chính là tâm quay.

Bài tập sau có thể xem là ứng dụng mẫu mực việc vận dụng tích 2 phép quay.

Ví dụ 2.7. Bên ngoài tam giác $ABC$ và trên các cạnh dựng các tam giác $BCA_1,CAB_1,ABC_1$ cân lần lượt tại $A_1,B_1,C_1$ với góc $BA_1C = 160^o$ và các góc $CB_1A=AC_1B= 100^o$. Tính góc $B_1A_1C_1$


File gửi kèm  phepquay6.png   11.77K   116 Số lần tải


Lời giải. Nhận xét rằng:
$$R(A_1;-160^o)=R(B_1;100^o).R(C_1;100^o)$$
Như vậy, theo tính chất tâm của tích hai phép quay thì góc $B_1A_1C_1 = 80^o$


Tất nhiên, với đề bài như trên, một số học sinh vẫn có thể đi “tính” góc $B_1A_1C_1$ với một khối lượng tính toán hết sức cồng kềnh và với kỹ thuật tính toán đáng nể. Nếu bây giờ biến tấu bài tập này đi một chút bằng cách cất đi điểm “mấu chốt” $A_1$ và gắn thêm tính di động cho các điểm $B_1,C_1$, ta nhận được phương án sau:


Bài toán. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ có $B,C$ cố định, còn $A$ thay đổi trên $(O)$. Bên ngoài tam giác, trên các cạnh $AB,AC$ dựng các tam giác $ABC_1,ACB_1$ với $\widehat{AC_1B}=\widehat{AB_1C}=100^o$. Chứng minh rằng trung trực của $B_1C_1$ luôn đi qua một điểm cố định.

Rõ ràng điểm cố định cần tìm chính là điểm $A_1$ trong bài tập trên nay đã được “giấu” đi. Và chính vị trí không dễ đoán của $A_1$ đã làm cho bài toán trở nên vô cùng khó khăn cho những ai chưa nắm được ý tưởng về tích của hai phép quay.

2.3. Về các phép dời hình khác. Để kết thúc phần này, xin nêu ra điều cần bổ sung cuối cùng để cho nội dung về phép biến hình được cân đối, hoàn chỉnh. Chúng ta biết rằng lớp các phép biến hình được trình bày đầy đủ nhất chính là lớp các phép dời hình. Chúng có thể được mô tả rất trọn vẹn thông qua các phép dời hình cơ sở là tịnh tiến, quay và đối xứng trục. Vậy nên chăng sau khi đã học xong các phép biến hình cụ thể này, chúng ta sẽ khái quát bằng khái niệm các phép dời hình và kết thúc bằng một mệnh đề mô tả đầy đủ lớp các phép dời hình để làm sáng tỏ bản chất khá đơn giản của chúng. Đây thường là sơ đồ mẫu mực khi trình bày về một lớp các phép biến đổi nào đó trong các lĩnh vực khác của toán học.
Mệnh đề mô tả các phép dời hình ở đây rất gọn, đơn giản và có thể suy ra

trực tiếp từ Mệnh đề 1 ở trên. Nhưng trước khi phát biểu nó, theo tôi nên phân loại các phép dời hình thành các phép dời hình thuận (là các phép dời hình bảo toàn định hướng) và các phép dời hình ngược (thay đổi định hướng). Điều này cũng gần giống như việc phân biệt hai tam giác bằng nhau thuận và bằng nhau nghịch mà học sinh đã rất quen thuộc. Việc phân loại các phép dời hình như vậy sẽ không gây ra khó khăn nào mà trái lại, nó còn có thể giúp học sinh hiểu và cảm nhận rõ ràng hơn về định hướng (cụ thể là chiều “quay” của một tam giác) trong các phép biến hình.
Đối với các phép dời hình thuận (quan trọng nhất và được xem xét kỹ lưỡng nhất) ta có sự mô tả đầy đủ sau:

Mệnh đề 2.8. Một phép dời hình thuận chỉ có thể là một phép tịnh tiến hoặc một phép quay.

Đối với các phép dời hình nghịch thì khó khăn hơn một chút:

Mệnh đề 2.9. Một phép dời hình nghịch có thể được biểu diễn như là tích một phép tịnh tiến với một phép đối xứng trục.


Trong phần bài tập của bộ sách giáo khoa Hình học nâng cao lớp 11, dạng tích này cũng được xét đến và được gọi là phép “đối xứng trượt”. Theo tôi, Mệnh đề 2.9 có thể không nhất thiết phải trình bày hoặc chỉ cần nhắc qua và đưa ra như một bài tập. Nhưng Mệnh đề 2.8 thì nên phát biểu như một lời đúc kết của phần các phép dời hình để sao cho khi học xong phần này, học sinh có cảm giác nắm bắt trọn vẹn, rõ ràng, không còn chút gì mơ hồ về các phép dời hình.

(còn nữa)


Vài bài toán hay về Bất đẳng thức lượng giác trong tam giác (phần 1)

25-07-2012 - 16:27


VÀI BÀI TOÁN HAY VỀ ĐẲNG THỨC LƯỢNG TRONG TAM GIÁC

Đoàn Quốc Khánh, học sinh Lớp 11A1


trường THPT Ngọc Lặc, huyện Ngọc Lặc, tỉnh Thanh Hóa



I. Lời giới thiệu

Trong môn hình học ở trường phổ thông, hình học phẳng có khá nhiều phân môn, thể loại, và hình tam giác, có vai trò rất đặc biệt. Việc chứng minh nhiều định lý và giải rất nhiều bài toán hình học đòi hỏi phải vận dụng hợp lý nhiều kiến thức về hình tam giác(tam giác bằng nhau, tam giác đồng dạng, các đường thẳng đặc biệt trong tam giác, v.v…)
Hình tam giác đã được nhiều nhà toán học trên thế giới nghiên cứu từ hàng nghìn năm nay và mãi cho đến những năm gần đây, nhiều tính chất, định lý mới, hoặc nhiều cách chứng minh mới của các định lý đã biết lần lượt ra đời. Ở bài viết này, tác giả xin giới thiệu đến bạn đọc những định lý, những bài toán hay về đẳng thức lượng giác trong tam giác, bao gồm định lý Stewart, định lý Morley, định lý Steiner-Lenmus về tam giác cân, bài toán Napoleon … và những mở rộng, chú ý, cách chứng minh độc đáo của nhiều nhà toán học cũng được nêu ra trong bài viết này, chúng ta hãy cùng tìm hiểu.



Hình đã gửi


Hình đã gửi


II. Định lý STEWART


Bài toán: Cho$\Delta ABC$. $D$ là một điểm trên cạnh $BC$. Đặt $AD = d, BD = m, DC = n$. Khi đó ta có công thức sau: $a{d^2} = m{b^2} + n{c^2} - amn$
Lời giải.


Hình đã gửi



Kẻ đường cao $AH$. Xét hai tam giác $ABD$ và $ACD$ và theo định lý hàm số $cos$, ta có:
\[{c^2} = {d^2} + {m^2} - 2md\cos \widehat {ADB} = {d^2} + {m^2} - 2m.HD\,\,\,\,\,\,\,(1)\]
$${b^2} = {d^2} + {n^2} - 2dn\cos \left( {\pi - \widehat {ADB}} \right) = {d^2} + {n^2} + 2dn\cos \widehat {ADB} = $$
$$={d^2} + {n^2} + 2nHD\,\,\,\,\,\,(2)$$
Nhân từng vế $(1), (2)$ theo thứ tự với $n$ và $m$ rồi cộng lại, ta có:
$$n{c^2} + m{b^2} = {d^2}(n + m) + mn(m + n) \,\,\,\,\,\,\,(3)$$
Do $m + n = a$, nên từ $(3)$ ta có: $a{d^2} = m{b^2} + n{c^2} - amn$

Định lý Stewart chứng minh xong.
Chú ý:
$ \bullet $ Stewart (1717 – 1785) là nhà toán học và thiên văn học người Scotland.
$ \bullet $ Nếu trong hệ thức Stewart xét $AD$ là đường trung tuyến, thì từ hệ thức Stewart có:
\[am_a^2 = \frac{a}{2}{b^2} + \frac{a}{2}{c^2} - a\frac{a}{2}\frac{a}{2} \Leftrightarrow m_a^2 = \frac{{2{b^2} + 2{c^2} - {a^2}}}{4}\,\,\,\,\,\,\,\,\,\,(4)\]
Hệ thức trên chính là hệ thức xác định trung tuyến quen biết trong tam giác.
$ \bullet $ Nếu trong hệ thức Stewart xét $AD$ là phân giác. Khi đó theo tính chất đường phân giác trong ta có:
\[\frac{m}{c} = \frac{n}{b} \Leftrightarrow m = \frac{{ac}}{{b + c}}\,\,\,\,\,\,\text{và}\,\,\,\,\,\,n = \frac{{ab}}{{b + c}}\]
Từ hệ thức Stewart có:
\[al_a^2 = \frac{{ac}}{{b + c}}{b^2} + \frac{{ab}}{{b + c}}{c^2} - a\frac{{{a^2}bc}}{{{{\left( {b + c} \right)}^2}}} \Rightarrow l_a^2 = \frac{{bc\left[ {{{\left( {b + c} \right)}^2} - {a^2}} \right]}}{{{{\left( {b + c} \right)}^2}}}\,\,\,\,\,\,\,\,\,(5)\]
Chú ý rằng: $$2{\cos ^2}\frac{A}{2} = 1 + \cos A = 1 + \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{{{{(b + c)}^2} - {a^2}}}{{2bc}}\,\,\,\,\,\,\,\,\,\,(6)$$
Từ $(5)$ và $(6)$ suy ra:
$$l_a^2 = \frac{{4{b^2}{{\cos }^2}\frac{A}{2}}}{{{{(b + c)}^2}}} \Rightarrow {l_a} = \frac{{2bc\cos \frac{A}{2}}}{{b + c}}$$
Hệ thức trên chính là hệ thức xác định đường phân giác.
Vậy hệ thức Stewart là tổng quát hoá của các hệ thức xác định đường trung tuyến và đường phân giác đã quen biết.
III. Định lý MORLEY
Bài toán: Cho $\Delta ABC$. Ở mỗi góc của tam giác vẽ hai đường chia góc đó ra làm ba phần bằng nhau. Các đường ấy cắt nhau tại $X, Y, Z$ (hình vẽ). Chứng minh rằng $\Delta XYZ$ đều.
Lời giải.
Hình đã gửi


Đặt $A = 3\alpha $, $B = 3\beta $,$C = 3\gamma $. Gọi các cạnh $BC, CA, AB$ và đường kính đường tròn ngoại tiếp $\Delta ABC$ là $a, b, c, d$. Theo định lý hàm số $sin$ trong$\Delta CYA$, ta có:
$$\frac{{CY}}{{\sin \alpha }} = \frac{b}{{\sin \left( {{{180}^o} - \alpha - \gamma } \right)}}\,\,\,\,\,\,\,\,\,\,\,(1)$$
Do $\alpha + \gamma = {60^o} - \beta $, vậy từ $(1)$ suy ra
\[{CY = b\frac{{\sin \alpha }}{{\sin \left( {{{120}^o} + \beta } \right)}} = d\sin 3\beta \frac{{\sin \alpha }}{{\sin \left( {{{60}^o} - \beta } \right)}}\,\,\,\,\,\,\,\,\,(2)}\]
Ta có: $$\sin 3\beta = 3\sin \beta - 4{\sin ^3}\beta = 4\sin \beta \left[ {{{\left( {\frac{{\sqrt 3 }}{2}} \right)}^2} - {{\sin }^2}\beta } \right] =$$
$$=4\sin \beta \left( {{{\sin }^2}{{60}^o} - {{\sin }^2}\beta } \right) = 4\sin \beta \sin \left( {{{60}^o} + \beta } \right)\sin \left( {{{60}^o} - \beta } \right)\,\,\,\,\,\,\,\,\,\,\,(3)$$
Thay $(3)$ vào $(2)$ có: $n = CY = 4d\sin \alpha \sin \beta \sin \left( {{{60}^o} + \beta } \right)$

Lí luận tương tự có: $m = CX = 4d\sin \alpha \sin \beta \sin \left( {{{60}^o} + \alpha } \right)$
Trong $\Delta CXY$, áp dụng định lý hàm số $cos$, ta có:
\[X{Y^2} = {m^2} + {n^2} - 2mn\cos \gamma = \]
\[ = 16{d^2}{\sin ^2}\alpha {\sin ^2}\beta \left[ {{{\sin }^2}\left( {{{60}^o} + \alpha } \right) + {{\sin }^2}\left( {{{60}^o} + \beta } \right) - 2\sin \left( {{{60}^o} + \alpha } \right)\sin \left( {{{60}^o} + \beta } \right)\cos \gamma } \right]\,\,\,\,\,\,\,\,(4)\]
Do $\left( {{{60}^o} + \alpha } \right) + \left( {{{60}^o} + \beta } \right) + \gamma = {180^0}$, nên xét $\Delta EFG\,\,\,\,\,\text{với}\,\,\,\,\widehat E = {60^o} + \alpha ,\widehat F = {60^o} + \beta ,\widehat G = \gamma .$
Gọi $d_1$ là đường kính đường tròn ngoại tiếp tam giác này. Theo định lý hàm số $cos$ trong tam giác này có:
\[{FG = e = {d_1}\sin \left( {{{60}^o} + \alpha } \right) \Rightarrow \sin \left( {{{60}^o} + \alpha } \right) = \frac{e}{{{d_1}}}}\]
\[{EG = f = {d_1}\sin \left( {{{60}^o} + \beta } \right) \Rightarrow \sin \left( {{{60}^o} + \beta } \right) = \frac{f}{{{d_1}}}}\]
\[{EF = g = {d_1}\sin \gamma \Rightarrow \sin \gamma = \frac{g}{{{d_1}}}}\]
Vậy thay vào $(4)$, ta có:
\[{X{Y^2} = 16{d^2}{{\sin }^2}\alpha {{\sin }^2}\beta \frac{{{e^2} + {f^2} - 2ef\cos \gamma }}{{d_1^2}}}\]
\[{ = 16{d^2}{{\sin }^2}\alpha {{\sin }^2}\beta \frac{{{g^2}}}{{d_1^2}} = 16{d^2}{{\sin }^2}\alpha {{\sin }^2}\beta {{\sin }^2}\gamma }\]
\[{ \Rightarrow XY = 4d\sin \alpha \sin \beta \sin \gamma }\]
Do vai trò bình đẳng, ta cũng có \[XZ = ZY = 4d\sin \alpha \sin \beta \sin \gamma \Rightarrow XY = YZ = ZX.\]
Vậy $\Delta XYZ$ là tam giác đều (đpcm).
Chú ý:
$ \bullet $ Frank Morley (1860 – 1937) sinh tại Anh, nhưng hầu như suốt đời sống ở Mĩ. Trong vài chục năm ông là giáo sư toán học ở trường đại học tổng hợp thuộc bang Baltimore. Bản thân học cách chứng minh của ông rất phức tạp. Cách chứng minh ở trên là của nhà toán học Ấn Độ Naranengar tìm ra vào năm 1909. Một nhà toán học Ấn Độ khác là Xachianarian cho cách giải "phi lượng giác" (chỉ dùng đến kiến thức hình học lớp 9)
$ \bullet $ Định lý về đường chia ba góc được Morley tìm ra từ 1899, nhưng mãi đến năm 1914 ông mới công bố cách chứng minh và mở rộng định lý với việc xét không chỉ các đường chia ba góc trong mà cả các đường chia ba góc ngoài của tam giác. Định lý Morley đã hấp dẫn nhiều người, trong đó có nhà toán học Pháp nổi tiếng Henri Lebesgue (1875 – 1941). Năm 1939, Lebesgue công bố chứng minh sơ cấp của định lý này. Ông xét các đường chia ba các góc trong và ngoài của tam giác (có tất cả 12 đường), và đã chứng minh được rằng trong các giao điểm của các đường đó có 27 bộ ba điểm là các đỉnh của tam giác đều.



Còn nữa ...