Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hoanght

Đăng ký: 12-01-2012
Offline Đăng nhập: 31-08-2018 - 11:52
-----

#610098 đề thi thử môn toán lần 1 năm 2016 THPT Nghèn Hà Tĩnh

Gửi bởi Hoanght trong 21-01-2016 - 11:05

Mời các mem thảo luận

File gửi kèm




#312218 Phương trình và hệ phương trình qua các đề thi thử Đại học 2012

Gửi bởi Hoanght trong 23-04-2012 - 13:02

Bài 45 :
Giải PT :
$\frac{1}{2}log_{\sqrt{2}}(x+3)+\frac{1}{4}log_{4}(x-1)^{8}=log_{2}4x$
Bài giải:
Điều kiện: $0< x\neq 1$
Biến đổi PT tương đương với $\log _{2}\left ( x+3 \right )+log_{2}\left | x-1 \right |=log_{2}4x\Leftrightarrow \left ( x+3 \right )\left | x-1 \right |=4x$
Xét hai trường hợp:
* $x> 1$. PT tương đương với $\left ( x+3 \right )\left ( x-1 \right )=4x\Leftrightarrow x^2-2x-3=0\Rightarrow x=3$
* $0< x< 1: \left ( x+3 \right )\left ( 1-x \right )=4x\Leftrightarrow x^2-6x+3=0\Rightarrow x=3-\sqrt{6}$
Tóm lại: PT có 2 nghiệm $x=3;x=3-\sqrt{6}$ Lôgarit hông có bài nào khó? >:)



#309612 Phương trình và hệ phương trình qua các đề thi thử Đại học 2012

Gửi bởi Hoanght trong 11-04-2012 - 09:24

Bài 20
Nhận xét $x=0\Rightarrow y=0$ là nghiệm của hệ
Xét trường hợp $x\neq 0$. Chia cả hai vế của PT (1) cho $xy$ và PT (2) cho $x^2y^2$ ta thu được hệ mới
$\left\{\begin{matrix} \left ( 1+\frac{y}{x} \right )\left ( x+\frac{1}{y} \right )=4 & \\ \left ( 1+\left ( \frac{y}{x} \right )^2 \right )\left ( x^2+\frac{1}{y^2} \right )=4 & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \left ( x+\frac{1}{x} \right )+\left ( y+\frac{1}{y} \right )=4 & \\ x^2+\frac{1}{x^2}+y^2+\frac{1}{y^2}=4 & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{x}+y+\frac{1}{y}=4 & \\ \left ( x+\frac{1}{x} \right )^2+\left ( y+\frac{1}{y} \right )^2=8 & \end{matrix}\right.$
Đặt $a=x+\frac{1}{x};b=y+\frac{1}{y}$. Ta thu được hệ $\left\{\begin{matrix} a+b=4 & \\ a^2+b^2=8 & \end{matrix}\right.\Leftrightarrow a=b=2$. Đến đây nghiệm của hệ là $\left\{\begin{matrix} x=1 & \\ y=1 & \end{matrix}\right.$ :wub:


#309439 $$\left\{\begin{matrix} x^2+y^2=m-3 \\ y+...

Gửi bởi Hoanght trong 10-04-2012 - 15:15

Điều kiện cần: Nếu $\left ( x;y \right )$ là nghiệm của hệ phương trình thì $\left ( -x;y \right )$ cũng là nghiệm của hệ. Do đó, để hệ có nghiệm duy nhất thì $x=0$. Khi đó ta có $\left\{\begin{matrix} y^2=m-3 & \\ y=1 & \end{matrix}\right.\Rightarrow m=4$.
Điều kiện đủ: Với $m=4$ hệ đã cho trở thành $\left\{\begin{matrix} x^2+y^2=1 & \\ y+\cos x=2 & \end{matrix}\right.$
Từ PT (1) $y^2\leq 1\Rightarrow y\leq 1$. Bởi vậy PT (2) $\Leftrightarrow \left\{\begin{matrix} y=1 & \\ \cos x=1 & \end{matrix}\right.$
Từ đó, hệ có nghiệm duy nhất $x=0;y=1$
Túm lại là $m=4$ là OK. :icon10:


#309437 $\left\{\begin{matrix} \frac{1}{\sqrt{x}}+...

Gửi bởi Hoanght trong 10-04-2012 - 14:58

Biến đổi PT (1) tương đương với
$\frac{y+\sqrt{x}}{x}=2\left ( \frac{y+\sqrt{x}}{y} \right )\Leftrightarrow \begin{bmatrix} y=-\sqrt{x} & \\ y=2x & \end{bmatrix}$
Trường hợp 1. $y=-\sqrt{x}$. Thay vào PT (2) nhận thấy $VT\leq 0$, còn $VT> 0$. Do đó vô nghiệm.
Trường hợp 2. $y=2x$. Cũng thế vào PT (2) thì thu được $2x\left ( \sqrt{x^2+1}-1 \right )=\sqrt{3x^2+3}$. Dễ thấy nghiệm $x=\sqrt{3}\Rightarrow y=2\sqrt{3}$ :icon10:


#309434 $\left\{\begin{matrix} 8x^{2}+18y^{2}+36xy-5(2x+3y)\...

Gửi bởi Hoanght trong 10-04-2012 - 14:41

Biến đổi PT (1) tương đương với $2\left ( 2x+3y \right )^{2}-5\left ( 2x+3y \right )\sqrt{6xy}+12xy=0$
Đặt $a=2x+3y;b=\sqrt{6xy}$ thì được $2a^2-5ab+2b^2=0\Leftrightarrow \left ( a-2b \right )\left ( 2a-b \right )=0$. Xét hai trường hợp là OK. Bạn làm tiếp nhé?


#309432 Phương trình và hệ phương trình qua các đề thi thử Đại học 2012

Gửi bởi Hoanght trong 10-04-2012 - 14:31

Bài 16. (Đề thi thử THPT Đồng Lộc - Hà Tĩnh. Lần 2)
Giải hệ phương trình $\left\{\begin{matrix} 8x^3-12x^2+10x=y^3+2y+3 & \\ x^2+2xy=3 & \end{matrix}\right.$


#309430 Phương trình và hệ phương trình qua các đề thi thử Đại học 2012

Gửi bởi Hoanght trong 10-04-2012 - 14:26

Bài 15:Giải bất phương trình: $$2\left( {{x^2} + 2} \right) < 3\left( {2x + \sqrt {{x^3} + 8} } \right)$$
Đề thi thử đại học trường THPT Phan Đình Phùng - Hà Tĩnh II - 2012
Bất phương trình tương đương với
$2\left ( x^2-3x+2 \right )< \sqrt{x^3+8}\Leftrightarrow 2\left ( x^2-3x+2 \right ) < \sqrt{\left ( x+2 \right )\left ( x^2-2x+4 \right )}$
Đặt $a=\sqrt{x+2};b=\sqrt{x^2-2x+4}$. Ta thu được Bất PT

$2\left ( b^2-a^2 \right )< 3ab\Leftrightarrow \left ( a+b \right )\left ( b-4a \right )< 0\Leftrightarrow b< 4a$

Đến đây có lẽ ổn rồi????

Kết quả: $9-\sqrt{109}< x< 9+\sqrt{109}$ >:)




#309173 Phương trình và hệ phương trình qua các đề thi thử Đại học 2012

Gửi bởi Hoanght trong 09-04-2012 - 12:58

Bài 2: Giải hệ phương trình: $\begin{cases}\sqrt{7x+y}-\sqrt{2x+y}=4\\ 2\sqrt{2x+y}-\sqrt{5x+8}=2 \end{cases}$
Đề thi thử lần 4 trường chuyên ĐHSP Hà Nội

Bài 2.
Đặt $a=\sqrt{7x+y};b=\sqrt{2x+y}$. Hệ đã cho trở thành $\left\{\begin{matrix} a-b=4 & \\ 2b-\sqrt{a^2-b^2+8}=2 & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=a-4 & \\ \sqrt{8a-8}=2a-10 & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=a-4 & \\ a^2-12a+27=0 & \end{matrix}\right.$
Với điều kiện $a\geq 5$ dẫn tới $\left\{\begin{matrix} a=9 & \\ b=5 & \end{matrix}\right.\Rightarrow \left\{\begin{matrix} 7x+y=81 & \\ 2x+y=25 & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{56}{5} & \\ y=\frac{13}{5} & \end{matrix}\right.$ :icon6: :icon10:
Dành mấy bài khó cho mấy cưng :wub:


#309170 Phương trình và hệ phương trình qua các đề thi thử Đại học 2012

Gửi bởi Hoanght trong 09-04-2012 - 12:42

Bài 4: Giải hệ phương trình sau trên $\mathbb{R}$ : $ \begin{cases} y^3=x^3\left(9-x^3\right) \\x^2y+y^2=6x \end{cases} $
Đề thi thử ĐH trường Phú Nhuận - TP.HCM

Bài 4.
Nhận xét $x=0\Rightarrow y=0$ là nghiệm của hệ.
Xét $x\neq 0\Rightarrow y\neq 0$. Chia hai vế của PT(1) cho $x^3$ và PT(2) cho $xy$ ta thu được

$\left\{\begin{matrix} x^3+\left ( \frac{y}{x} \right )^3 =9& \\ x+\frac{y}{x}=\frac{6}{y} & \end{matrix}\right.$

$\Leftrightarrow \left\{\begin{matrix} \left ( x+\frac{y}{x} \right )^3-3y\left ( x+\frac{y}{x} \right ) =9& \\ x+\frac{y}{x}=\frac{6}{y} & \end{matrix}\right.$

Đặt $a=x+\frac{y}{x}$. Ta được $\left\{\begin{matrix} a^3-3ay=9 & \\ a=\frac{6}{y} & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^3-18=9 & \\ ay=6 & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=3 & \\ y=2 & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+\frac{y}{x}=3 & \\ y=2 & \end{matrix}\right.$

Từ đó thu được thêm hai nghiệm của hệ là $\left\{\begin{matrix} x=1 & \\ y=2 & \end{matrix}\right.$ hoặc $\left\{\begin{matrix} x=2 & \\ y=2 & \end{matrix}\right.$ :ukliam2:




#309168 Phương trình và hệ phương trình qua các đề thi thử Đại học 2012

Gửi bởi Hoanght trong 09-04-2012 - 12:21

Bài 3: Giải hệ phương trình:
$\left\{ \begin{array}{l}
2y(4y^2 + 3x^2 ) = x^4 (x^2 + 3) \\
2012^x (\sqrt {2y - 2x + 5} - x + 1) = 4024 \\

\end{array} \right.$
Đề thi thử ĐH môn toán trường Dân lập Nguyễn Khuyến - TP.HCM

Bài 3.
Từ PT (1) suy ra $y> 0$. Biến đổi PT (1) tương đương với $8y^3+6x^2y=x^6+3x^4\Leftrightarrow x^6-8y^3+3x^4-6x^2y=0$
$\Leftrightarrow \left ( x^2-2y \right )\left ( x^4+2x^2y+4y^2+3x^2 \right )=0\Rightarrow 2y=x^2$. Thay vào PT(2), thu được

$2012^{x}\left ( \sqrt{x^2-2x+5}-x+1 \right )=4024$

Nhận xét $x> 1$ và $x< 1$ không thỏa mãn.

$x=1$ là nghiệm duy nhất của PT. Do đó, nghiệm của hệ là $x=1;y=\frac{1}{2}$.




#308520 Tìm giá trị nhỏ nhất của biểu thức $$P=\frac{\left ( a+b+...

Gửi bởi Hoanght trong 06-04-2012 - 12:57

Cho các số dương a, b, c, d, e thỏa mãn: a+b+c+d+e=4. Tìm giá trị nhỏ nhất của biểu thức

$P=\frac{\left ( a+b+c+d \right )\left ( a+b+c \right )\left ( a+b \right )}{abcde}$




#307035 Chuyên đề 4:Hình học mặt phẳng, Hình giải tích.

Gửi bởi Hoanght trong 30-03-2012 - 20:02

Sao hông có bài nào trong Oxyz nhỉ?
Đề bài Trong không gian Oxyz, cho đường thẳng d: $\frac{x}{1}=\frac{y-1}{-1}=\frac{z}{2}$ và điểm $A\left ( 0;1;2 \right )$. Viết phương trình mặt cầu có tâm thuộc đường thẳng d, đi qua điểm A và tiếp xúc với mặt phẳng Oxy.


#305839 $\left\{\begin{matrix} x^4+2x^3y+x^2y^2=2x+9 & \...

Gửi bởi Hoanght trong 22-03-2012 - 11:15

Bài 1. Đề thi KB - 2008 :icon6:


#305543 CÁC BÀI TOÁN LIÊN QUAN ĐẾN KSHS LTĐH 2012

Gửi bởi Hoanght trong 20-03-2012 - 20:53

Khảo sát hàm số là bài toán bắt buộc trong các đề thi ĐH - CĐ hằng năm. Bài viết xin giới thiệu tới các bạn những bài toán cơ bản nhất. Hi vọng nhận được ý kiến đóng góp của tất cả anh em trên diễn đàn! :icon6:
Bài toán 1. CỰC TRỊ CỦA HÀM SỐ
Câu 1. Tìm m để hàm số$y=x^3+mx^2+7x+3$ có đường thẳng đi qua các điểm cực đại, cực tiểu của nó vuông góc với đường thẳng $y=3x-7$.
Bài giải
Ta có: $y'=3x^2+2mx+7$; $y'=0\Leftrightarrow 3x^2+2mx+7=0 \left ( 1 \right )$
Hàm số có cực đại và cực tiểu khi và chỉ khi PT (1) có hai nghiệm phân biệt $\Leftrightarrow \Delta '> 0\Leftrightarrow \left | m \right |> 21$. Khi đó, chia y cho y' ta được $y=\left ( \frac{x}{3}+\frac{m}{9} \right )y'+\frac{2}{9}\left ( 21-m^2 \right )x+3-\frac{7m}{9}$
Gọi $x_{1},x_{2}$ là hoành độ các điểm cực trị. Ta có $y'\left ( x_{1} \right )=y'\left ( x_{2} \right )=0$. Do đó,
$y\left ( x_{1} \right )=\frac{2}{9}\left ( 21-m^2 \right )x_{1}+3-\frac{7m}{9}$ và $y\left ( x_{2} \right )=\frac{2}{9}\left ( 21-m^2 \right )x_{2}+3-\frac{7m}{9}$
Vì vậy, PT đường thẳng đi qua các điểm cực trị của hàm số đã cho là $y\left =\frac{2}{9}\left ( 21-m^2 \right )x+3-\frac{7m}{9}$. Đường thẳng d vuông góc với đường thẳng $y=3x-7$ $y=3x-7\Leftrightarrow \frac{2}{9}\left ( 21-m^2 \right ).3=-1\Leftrightarrow m=\pm \frac{3\sqrt{10}}{2}$.
Câu 2. Cho hàm số $y=x^3-3mx+2$. Tìm m để hàm số có hai điểm cực trị A, B sao cho diện tích của tam giác AIB bằng $\sqrt{18}$, trong đó $I\left ( 1;1 \right )$.
Bài giải
Ta có: $y'=3x^2-3m$. Hàm số có cực đại và cực tiểu $\Leftrightarrow m> 0$
Khi đó, tọa độ các điểm cực trị là $A\left ( \sqrt{m};2-2m\sqrt{m} \right )$ và $B\left ( -\sqrt{m};2+2m\sqrt{m} \right )$.
Phương trình AB: $2mx+y-2=0$. $d\left ( I,AB \right )=\frac{\left | 2m-1 \right |}{\sqrt{4m^2+1}}$ và $AB=\sqrt{4m+16m^3}$.
Điều kiện $S_{ABC}=\sqrt{18}\Leftrightarrow \frac{1}{2}.d\left ( I,AB \right ).AB=\sqrt{18}\Leftrightarrow m=2.$
Câu 3. Tìm m để hàm số $y=x^3-3mx^2+3\left ( m^2-1 \right )x-m^3+4m-1$ có hai điểm cực trị A, B sao cho tam giác OAB vuông tại O, O là gốc tọa độ.
Bài giải
Ta có: $y'=3x^2-6mx+3\left ( m^2-1 \right )$. Hàm số có CĐ, CT với mọi m.
Tọa độ các điểm cực trị $A\left ( m+1;m-3 \right ), B\left ( m-1;m+1 \right )$.
Tam giác OAB vuông tại O $\Leftrightarrow \overrightarrow{OA}.\overrightarrow{OB}=0\Leftrightarrow m=-1$ hoặc $m=2$.
Trên đây là 3 bài cơ bản về cực trị của hàm số bậc 3. Ngày mai chúng ta chuyển qua cực trị của hàm số bậc 4. Chú ý đón xem :icon10: