Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


reddevil1998

Đăng ký: 20-05-2012
Offline Đăng nhập: 29-03-2019 - 05:33
**---

Bài viết của tôi gửi

Trong chủ đề: Balkan MO 2013

21-07-2014 - 13:27

Lâu rồi mới lên lại VMF thì thôi tặng mn lời giải bài tổ vậy

Hoặc có thê dùng bổ đề : Mọi graph có deg >=3 thì luôn có chu trình độ dài chẵn:)))

File gửi kèm  1973416_376037972545593_3543426393601681092_o.jpg   140.88K   40 Số lần tảiFile gửi kèm  10514532_376038015878922_2893831911492060499_n.jpg   44.89K   38 Số lần tải


Trong chủ đề: $a_{n+1}=\frac{(2n+3)a_n+3na_{n-1}...

18-12-2013 - 14:29

Cho dãy số $a_0=a_1=1,a_{n+1}=\frac{(2n+3)a_n+3na_{n-1}}{n+3}$
Chứng minh rằng dãy số nguyên với mọi n.

Ta quy nạp Cm được dãy :$a_{n+2}=a_{n+1}+\sum_{k=1}^{n}a_{k}a_{n-k}$ hoặc $a_{n}=\sum_{k=0}^{n}\binom{n}{k}C_{k}$ với $C_{k}$ là số Catalan thứ k , Về tính chất của số này , xem thêm ở đây http://en.wikipedia..../Catalan_number


Trong chủ đề: IMO 1993

11-12-2013 - 13:10

Uk , mình cũng mã hoá các trạng thái bật tắt như bạn là một xâu nhị phân , Ta Cm sau $n^{2}-1$ bước thì ta sẽ đạt được một dãy toàn $1$

Vì các phần tử của dãy nhị phân chỉ là $1,0$ nên ý tưởng tự nhiên là ta sẽ xét mod $2$

Goi $K_{i}$ là trạng thái dãy sau $i$ bước

$K_{i,j}$ là giá trị của đèn j ở trạng thái i$K_{n-1,j}$

Ta có CTTH của dãy $K_{i,1}$ theo mod 2$K_{i+1,1}=K_{i,0}+K_{i,1}$

Quy nạp lên ta có CTTH của $K_{i,j}$ theo mod 2 là $K_{i,j}=\sum_{t=0}^{j}K_{i,t}$

Ta xét hàm sinh của dãy $F(y)=\sum_{i=0}^{\propto }K_{i,j}y^{i}=\sum_{i=0}^{\propto }\sum_{t=0}^{j}K_{i,t}y^{i}=\frac{1}{(1-y)^{i+1}}=\sum_{i=0}^{\propto }\binom{i+j}{i}y^{i}$

Vậy ta có CTTQ của dãy $K_{i,j}=\binom{i+j}{i}$

Xét $K_{n-1,j}$$=\binom{n-1+j}{n-1}=\binom{2^{k}-1+j}{2^{k}-1} (j=1,2,...,n-1)$

với i=1,2,..,n-1 thì theo dịnh lí Lucas , ta có $K_{n-1,j}\equiv 0(mod 2)$ nên gt các đèn ở các vị trí 1,2,...,n-1 (lấy theo mod n) là 0 , còn đèn ở vị trí 0 ( theo mod n) là 1 sau $n(n-1)$ bước , còn bước cuối cùng ta chỉ việc thực hiện phép biến đổi $(1,0)\rightarrow (1,1)$ là ta có một dãy toàn 1

Câu c thì tương từ chú ý ta có biểu diễn cơ số của j theo mod 2 là $j=2^{a_{1}}+2^{a_{2}}+...+2^{a_{p}}$ , nếu xét 0<j<n-1hì ta lại dùng Lucas như trên thôi , các bạn tự nghĩ nốt nhé


Trong chủ đề: Chuyên đề khoa học của học sinh trường THPT chuyên KHTN

27-11-2013 - 22:04

Vâng các anh làm xong chưa  :icon6:(Chuyên đề đã được sửa lại cho hoàn chỉnh thêm , các bạn chịu khó tải lại nhé).


Trong chủ đề: $a^{2}-b^{2}=b^{2}-c^{2}=c^...

25-10-2013 - 11:59

từ giả thiết suy ra

$a^{2} = 3k + d^{2}$

$b^{2} = 2k + d^{2}$

$c^{2} = k + d^{2}$

(với k thuộc tập các số nguyên)

Ta chú ý rằng số chính phương khi chia cho 3 chỉ có thể dư 1 hoặc 0

Bởi vậy buộc số k phải chia hết cho 3 trong mọi trường hợp

Đến đây ta có thể chọn ra a,b,c,d thỏa đề bài

Vớ vẩn bạn đừng có mà chém lung tung ,bạn có biết đây là cả 1 bài toán lớn trong lý thuyết Pt Diophante ko mà lại dám làm vậy.

Bài này xuất phát từ bổ đề sau:

PT $x^{4}-x^{2}y^{2}+y^{4}$$=z^{2}$ chỉ có các no nguyên dương là $(x,y,z)$$=(k,0,k^{2}),(0,k,k^{2}),(k,k,k^{2})$

Tuy nhiên CM nhận xét này cũng ko phải dễ,bạn xem trong tài liệu sau