
Flower letter
Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.
29-11-2012 - 22:45
29-11-2012 - 21:02
Phải chăng cách chứng minh này sai?Cho $a,b,c$ là 3 cạnh của 1 tam giác
Chứng minh : $\sum \frac{1}{a^2+bc}\leq \frac{a+b+c}{2abc}$ ?
28-11-2012 - 21:04
Bài 1 hình như ta dùng đánh giá sauMình xin đóng góp vài bài:
1) Cho $a,b,c>0$ chứng minh rằng
$\frac{ab}{c^{2}}+\frac{ca}{b^{2}}+\frac{bc}{a^{2}}\geq \frac{1}{2}(\frac{a+b}{c}+\frac{c+a}{b}+\frac{b+c}{a})$
2)Cho $a,b,c>0$ chứng minh rằng
$\frac{b+c}{a^{2}}+\frac{c+a}{b^{2}}+\frac{a+b}{c^{2}}\geq 2(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})$
3)Cho $a,b,c>0$ thoả mãn $a+b+c=3$chứng minh rằng
$abc(a^{2}+b^{2}+c^{2})\leq 3$
4)Cho $a,b,c,d>0$ chứng minh rằng
$\frac{a-b}{b-c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}+\frac{d-a}{a+b}\geq 0$
P/s: lời giải post sau ^^
28-11-2012 - 19:59
Đây dĩ nhiên là 1 BĐT sai?ngay với x=y=z=1,ta đã thấy???Cho x,y,z>0. CMR: $xy+yz+zx\geq 2(x+y+z)$
28-11-2012 - 19:15
Community Forum Software by IP.Board
Licensed to: Diễn đàn Toán học