Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


thanhdotk14

Đăng ký: 13-11-2012
Offline Đăng nhập: 17-04-2018 - 23:17
*****

Bài viết của tôi gửi

Trong chủ đề: chứng minh bất đẳng thức holder dạng$(a^{3}+b^{3...

01-05-2015 - 17:12

Bất đẳng thức Holder có rất nhiều tài liệu viết mà, các em có thể tìm kiếm nhiều cách chứng minh khá hay trên mạng :)


Trong chủ đề: Cho $a,b,c>0$ sao cho abc=1. Chứng minh rằng: $\s...

04-03-2014 - 06:15

Cho $a,b,c>0$ sao cho $abc=1$. Chứng minh rằng: $\sum \frac{a^3+5}{a^3(b+c)}\ge9$

Ta có: $$\frac{a^3+5}{a^3(b+c)}\ge \frac{3(a+1)}{a^3(b+c)}=\frac{3(1+bc)}{a^2(b+c)}$$

Do đó, ta cần chứng minh:$$\sum \frac{1+bc}{a^2(b+c)}\ge 3$$

$$\Leftrightarrow \sum \frac{1}{a^2(b+c)}+\sum \frac{bc}{a^2(b+c)}\ge 3$$

Lại có: $$\sum \frac{1}{a^2(b+c)}=\sum \frac{bc}{ab+ca}\ge \frac{3}{2}$$

$$\sum \frac{bc}{a^2(b+c)}=\frac{\frac{1}{a^2}}{\frac{1}{b}+\frac{1}{c}}\ge \frac{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}{2}\ge \frac{3}{2}$$

Từ đó, bất đẳng thức được chứng minh

Đẳng thức xảy ra $\Leftrightarrow a=b=c=1$


Trong chủ đề: $ (a+b-c-1)(b+c-a-1)(c+a-b-1) \le 8 $

07-11-2013 - 18:15

đặt $f(x)=x^3$ => $f'(x)=6x \geq 0$

mà bộ $(4,4,2,0,0)$ trội hơn bộ $(a_1,a_2,a_3,a_4,a_5)$ (hiển nhiên)

nên $f(4)+f(4)+f(2)+f(0)+f(0)\geq f(a_1)+f(a_2)+f(a_3)+f(a_4)+f(a_5)$ (theo bất đẳng thức karamata)

<=> $136 \geq a_1^3+a_2^3+a_3^3+a_4^3+a_5^3$

dấu '=' xảy ra khi a1=a2=4, a3=2,a4=a5=0 và các hoán vị của nó

Đề nghị em chứng minh rõ rành nha  :icon6:  :icon6:  :icon6:

_______________________________________

Bài giải:

Không mất tính tổng quát, ta có thể giả sử:$4\ge a_1\ge a_2\ge a_3\ge a_4\ge a_5\ge 0$

Từ đó suy ra:$$\left\{\begin{matrix} a_1\le 4 & & \\ a_1+a_2\le 8 & & \\ a_1+a_2+a_3\le 10 & & \\ a_1+a_2+a_3+a_4\le 10 & & \\ a_1+a_2+a_3+a_4+a_5=10 & & \end{matrix}\right.$$

Ta có:$$P=a_1^3+a_2^3+a_3^3+a_4^3+a_5^3$$

$$=a_1(a_1^2-a_2^2)+(a_1+a_2)(a_2^2-a_3^2)+(a_1+a_2+a_3)(a_3^2-a_4^2)+(a_1+a_2+a_3+a_4)(a_4^2-a_5^2)+(a_1+a_2+a_3+a_4+a_5)a_5^2$$

$$\le 4(a_1^2-a_2^2)+8(a_2^2-a_3^2)+10(a_3^2-a_4^2)+10(a_4^2-a_5^2)+10a_5^2$$

$$=2(2a_1^2+2a_2^2+a_3^2)$$

Lại có:$$a_1^2+a_2^2+a_3^2=a_1(a_1-a_2)+(a_1+a_2)(a_2-a_3)+(a_1+a_2+a_3)a_3$$

$$\le 4(a_1+a_2)+2a_3=2(a_1+a_2)+2(a_1+a_2+a_3)\le 36$$

Từ đó suy ra:$$P\le 2(36+32)=136$$

Đẳng thức xảy ra $\Leftrightarrow a_1=a_2=4,a_3=2,a_4=a_5=0$ và các hoán vị


Trong chủ đề: $ (a+b-c-1)(b+c-a-1)(c+a-b-1) \le 8 $

05-11-2013 - 23:23

Góp vui một bài, bài này khá độc đáo =))

________________________________

Bài 20: Cho các số thực $a_1,a_2,a_3,a_4,a_5\in [0;4]$ và thỏa mãn:$$a_1+a_2+a_3+a_4+a_5=10$$

Tìm $\max$ của biểu thức:$$P=a_1^3+a_2^3+a_3^3+a_4^3+a_5^3$$


Trong chủ đề: 2. Chứng minh: $I\in PQ$

05-11-2013 - 19:50

Đường tròn $\left ( E \right )$ tiếp xúc với 2 cạnh $AB, AC$ của $\Delta ABC$ tại $P,Q$ và cũng tiếp xúc trong với đường tròn ngoại tiếp tam giác đó tại $S$. Gọi $(I)$ là đường tròn nội tiếp  $\Delta ABC$.

1. Gọi M trung điểm $BC$. Chứng minh: $\angle BIM=\angle SBI$ .

2. Chứng minh: $I\in PQ$

Đây chính là kết quả của bài toán này nè bạn :)