Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Pham Le Yen Nhi

Đăng ký: 26-11-2012
Offline Đăng nhập: 12-10-2018 - 20:04
***--

Bài viết của tôi gửi

Trong chủ đề: Đề thi học sinh giỏi môn toán khối 11 khu vực DUYÊN HẢI VÀ ĐỒNG BẰNG BẮC...

07-05-2016 - 20:17

Câu 1:

 

Ta có:

$(n+3)u_{n+2}=2(n+2)^{2}u_{n+1}-(n+1)^{2}(n+2)u_{n}$

$\Leftrightarrow (n+3)u_{n+2}-(n+2)^{2}u_{n+1}=(n+2)((n+2)u_{n+1}-(n+1)^{2}u_{n})$

Đặt:

$x_{n}=(n+1)u_{n}-n^{2}u_{n-1}$

$\Rightarrow x_{n}=nx_{n-1}=n(n-1)x_{n-2}=...=\frac{2017n!}{2}$

Từ đó ta có:

$(n+1)u_{n}-n^{2}u_{n-1}=\frac{2017n!}{2}$

Từ đây tính được $u_{n}=\frac{1}{n+1}(n!+\frac{(n-1)2017n!)}{2})$


Trong chủ đề: $(x+1)\sqrt{x-3}+\sqrt[3]{x+4}-3x+5=0...

14-05-2015 - 19:49

giải phương trình

$(x+1)\sqrt{x-3}+\sqrt[3]{x+4}-3x+5=0 (1) $

ĐK: $x\geq 3$

Ta có

$(1)\Leftrightarrow (\sqrt[3]{x+4}-2)+(\sqrt{x-3}-1)+(x\sqrt{x-3}-(3x-8))=0$

$\Leftrightarrow \frac{x-4}{(\sqrt[3]{x+4})^{2}+2\sqrt[3]{x+4}+4}+\frac{x-4}{\sqrt{x-3}+1}+\frac{(x-4)^{3}}{x\sqrt{x-3}+(3x-8)}=0$

Từ đây dễ dàng suy ra $x=4$ là nghiệm duy nhất của phương trình đã cho


Trong chủ đề: CMR: $AP \geqslant AI$ và ...

04-05-2015 - 00:01

 

Làm 1 bài tặng 10 likes  :lol:  :lol:  :lol:  :namtay 

 

1. Cho tam giác ABC, I là tâm nội tam giác, điểm P nằm trong tam giác / (góc)PBA+PCA=PCB+PBC. CMR: $AP \geqslant AI$

Giả sử $AB\leq AC$

Ta có 

$\widehat{PBA}+\widehat{PCA}=(180^{\circ}-\widehat{PAB}-\widehat{APB})+(180^{\circ}-\widehat{PAC}-\widehat{APC})=(360^{\circ}-\widehat{APB}-\widehat{APC})-\widehat{BAC}=\widehat{BPC}-\widehat{BAC}$

Mà $\widehat{PBA}+\widehat{PCA}=\widehat{PCB}+\widehat{PBC}$

$\Rightarrow \widehat{BPC}-\widehat{BAC}=\widehat{PBC}+\widehat{PCB}$

$\Rightarrow \widehat{BPC}-\widehat{BAC}=180^{\circ}-\widehat{BPC}$

$\Rightarrow \widehat{BPC}=90^{\circ}+\frac{\widehat{BAC}}{2}$

Vẽ đường tròn ngoại tiếp $\Delta BIC$ cắt $AC$ tại $N$

Dễ thấy $P$ thuộc cung nhỏ $BN$ ( do $P$ nằm trong tam giác)

Gọi $M$ là giao điểm của $AI$ và $BN$.

Ta chứng minh được $\Delta ABN$ cân $\Rightarrow$ $AI$ vuông góc với $BN$ 

Lấy điểm $P'$ bất kì thuộc cung nhỏ $BN$

Gọi $K$ là chân đường vuông góc kẻ từ $P'$ xuống $BN$

Đặt $a$ là khoảng cách từ $P'$ đến $BN$.

Ta có $AI=AM-IM\leq AK-a\leq AP'$

Từ đó ta suy ra điều cần chứng minh

p/s: Bạn tự vẽ hình nha :))


Trong chủ đề: Tìm CTTQ: ${x_{n + 1}} = \frac{{...

01-05-2015 - 22:15

Tìm công thức số hạng tổng quát của dãy số $\left( {{x_n}} \right)$ xác định bởi

${x_1} = 1,{x_{n + 1}} = \frac{{{x_n}}}{{{{\left( {2n + 1} \right)}^2}{x_n} + 1}},\forall n \ge 1$

$x_{n+1}=\frac{x_{n}}{(2n+1)^{2}x_{n}+1}\Rightarrow \frac{1}{x_{n+1}}=\frac{(2n+1)^{2}x_{n}+1}{x_{n}}=(2n+1)^{2}+\frac{1}{x_{n}}$

Đặt $v_{n+1}=\frac{1}{x_{n+1}}\Rightarrow v_{n+1}=(2n+1)^{2}+v_{n}$

Từ đó sử dụng phép thế ta dễ dàng tìm được 

$v_{n+1}=\frac{2n(n+1)(2n+1)}{3}+2n(n+1)+n+1\Rightarrow v_{n}=\frac{2(n-1)n(2n-1)}{3}+2n(n-1)+n$

Vậy $x_{n}=\frac{1}{\frac{2(n-1)n(2n-1)}{3}+2n(n-1)+n}$


Trong chủ đề: Tìm số nguyên dương k thỏa mãn $a_{1}=1;a_{n+1}=...

01-05-2015 - 21:32

Tìm số nguyên dương k sao cho dãy số sau gồm toàn số nguyên $a_{1}=1;a_{n+1}=5a_{n}+\sqrt{ka_{n}^{2}-8}$, với mọi n nguyên dương

Ta có $a_{2}=5+\sqrt{k-8}=5+t$ $(t=\sqrt{k-8}\in N)$

$\Rightarrow a_{3}=5(t+5)+\sqrt{(t^{2}+8)(t+5)^{2}-8}$

Vì $a_{n}$ là dãy nguyên nên $a_{3}$ nguyên

$\Rightarrow (t^{2}+8)(t+5)^{2}-8=p^{2}$

Ta chứng minh được

$(t^{2}+5t+4)^{2}< (t^{2}+8)(t+5)^{2}-8<(t^{2}+5t+14)^{2}$

Từ đây dễ dàng tìm được $t=4$, suy ra được $k=24$