Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Pham Le Yen Nhi

Đăng ký: 26-11-2012
Offline Đăng nhập: 12-10-2018 - 20:04
***--

#631794 Đề thi học sinh giỏi môn toán khối 11 khu vực DUYÊN HẢI VÀ ĐỒNG BẰNG BẮC BỘ n...

Gửi bởi Pham Le Yen Nhi trong 07-05-2016 - 20:17

Câu 1:

 

Ta có:

$(n+3)u_{n+2}=2(n+2)^{2}u_{n+1}-(n+1)^{2}(n+2)u_{n}$

$\Leftrightarrow (n+3)u_{n+2}-(n+2)^{2}u_{n+1}=(n+2)((n+2)u_{n+1}-(n+1)^{2}u_{n})$

Đặt:

$x_{n}=(n+1)u_{n}-n^{2}u_{n-1}$

$\Rightarrow x_{n}=nx_{n-1}=n(n-1)x_{n-2}=...=\frac{2017n!}{2}$

Từ đó ta có:

$(n+1)u_{n}-n^{2}u_{n-1}=\frac{2017n!}{2}$

Từ đây tính được $u_{n}=\frac{1}{n+1}(n!+\frac{(n-1)2017n!)}{2})$




#613362 $4^{x}+4^{y}+4^{z}+ ln(x^{4}+y^...

Gửi bởi Pham Le Yen Nhi trong 06-02-2016 - 19:44

Cho $0<(x+y)^{2}+(y+z)^{2}+(z+x)^{2}\leq 2$

Tìm GTLN của

$4^{x}+4^{y}+4^{z}+ ln(x^{4}+y^{4}+z^{4})-\frac{3}{4}(x+y+z)^{4}$




#559374 $(x+1)\sqrt{x-3}+\sqrt[3]{x+4}-3x+5=0$

Gửi bởi Pham Le Yen Nhi trong 14-05-2015 - 19:49

giải phương trình

$(x+1)\sqrt{x-3}+\sqrt[3]{x+4}-3x+5=0 (1) $

ĐK: $x\geq 3$

Ta có

$(1)\Leftrightarrow (\sqrt[3]{x+4}-2)+(\sqrt{x-3}-1)+(x\sqrt{x-3}-(3x-8))=0$

$\Leftrightarrow \frac{x-4}{(\sqrt[3]{x+4})^{2}+2\sqrt[3]{x+4}+4}+\frac{x-4}{\sqrt{x-3}+1}+\frac{(x-4)^{3}}{x\sqrt{x-3}+(3x-8)}=0$

Từ đây dễ dàng suy ra $x=4$ là nghiệm duy nhất của phương trình đã cho




#558306 $\sqrt{\frac{7}4{\sqrt{x}-1...

Gửi bởi Pham Le Yen Nhi trong 08-05-2015 - 00:25

Giải phương trình

$\sqrt{\frac{7}4{\sqrt{x}-1+x^{2}}}=(1-\sqrt{x})^{2}$




#557791 CMR: $AP \geqslant AI$ và ...

Gửi bởi Pham Le Yen Nhi trong 04-05-2015 - 00:01

 

Làm 1 bài tặng 10 likes  :lol:  :lol:  :lol:  :namtay 

 

1. Cho tam giác ABC, I là tâm nội tam giác, điểm P nằm trong tam giác / (góc)PBA+PCA=PCB+PBC. CMR: $AP \geqslant AI$

Giả sử $AB\leq AC$

Ta có 

$\widehat{PBA}+\widehat{PCA}=(180^{\circ}-\widehat{PAB}-\widehat{APB})+(180^{\circ}-\widehat{PAC}-\widehat{APC})=(360^{\circ}-\widehat{APB}-\widehat{APC})-\widehat{BAC}=\widehat{BPC}-\widehat{BAC}$

Mà $\widehat{PBA}+\widehat{PCA}=\widehat{PCB}+\widehat{PBC}$

$\Rightarrow \widehat{BPC}-\widehat{BAC}=\widehat{PBC}+\widehat{PCB}$

$\Rightarrow \widehat{BPC}-\widehat{BAC}=180^{\circ}-\widehat{BPC}$

$\Rightarrow \widehat{BPC}=90^{\circ}+\frac{\widehat{BAC}}{2}$

Vẽ đường tròn ngoại tiếp $\Delta BIC$ cắt $AC$ tại $N$

Dễ thấy $P$ thuộc cung nhỏ $BN$ ( do $P$ nằm trong tam giác)

Gọi $M$ là giao điểm của $AI$ và $BN$.

Ta chứng minh được $\Delta ABN$ cân $\Rightarrow$ $AI$ vuông góc với $BN$ 

Lấy điểm $P'$ bất kì thuộc cung nhỏ $BN$

Gọi $K$ là chân đường vuông góc kẻ từ $P'$ xuống $BN$

Đặt $a$ là khoảng cách từ $P'$ đến $BN$.

Ta có $AI=AM-IM\leq AK-a\leq AP'$

Từ đó ta suy ra điều cần chứng minh

p/s: Bạn tự vẽ hình nha :))




#557347 Tìm CTTQ: ${x_{n + 1}} = \frac{{...

Gửi bởi Pham Le Yen Nhi trong 01-05-2015 - 22:15

Tìm công thức số hạng tổng quát của dãy số $\left( {{x_n}} \right)$ xác định bởi

${x_1} = 1,{x_{n + 1}} = \frac{{{x_n}}}{{{{\left( {2n + 1} \right)}^2}{x_n} + 1}},\forall n \ge 1$

$x_{n+1}=\frac{x_{n}}{(2n+1)^{2}x_{n}+1}\Rightarrow \frac{1}{x_{n+1}}=\frac{(2n+1)^{2}x_{n}+1}{x_{n}}=(2n+1)^{2}+\frac{1}{x_{n}}$

Đặt $v_{n+1}=\frac{1}{x_{n+1}}\Rightarrow v_{n+1}=(2n+1)^{2}+v_{n}$

Từ đó sử dụng phép thế ta dễ dàng tìm được 

$v_{n+1}=\frac{2n(n+1)(2n+1)}{3}+2n(n+1)+n+1\Rightarrow v_{n}=\frac{2(n-1)n(2n-1)}{3}+2n(n-1)+n$

Vậy $x_{n}=\frac{1}{\frac{2(n-1)n(2n-1)}{3}+2n(n-1)+n}$




#557339 Tìm số nguyên dương k thỏa mãn $a_{1}=1;a_{n+1}=5a_...

Gửi bởi Pham Le Yen Nhi trong 01-05-2015 - 21:32

Tìm số nguyên dương k sao cho dãy số sau gồm toàn số nguyên $a_{1}=1;a_{n+1}=5a_{n}+\sqrt{ka_{n}^{2}-8}$, với mọi n nguyên dương

Ta có $a_{2}=5+\sqrt{k-8}=5+t$ $(t=\sqrt{k-8}\in N)$

$\Rightarrow a_{3}=5(t+5)+\sqrt{(t^{2}+8)(t+5)^{2}-8}$

Vì $a_{n}$ là dãy nguyên nên $a_{3}$ nguyên

$\Rightarrow (t^{2}+8)(t+5)^{2}-8=p^{2}$

Ta chứng minh được

$(t^{2}+5t+4)^{2}< (t^{2}+8)(t+5)^{2}-8<(t^{2}+5t+14)^{2}$

Từ đây dễ dàng tìm được $t=4$, suy ra được $k=24$




#554925 $\frac{a+1}{b}+\frac{b+1}{a...

Gửi bởi Pham Le Yen Nhi trong 18-04-2015 - 21:24

Giả sử $a,b$ là các số nguyên dương sao cho $\frac{a+1}{b}+\frac{b+1}{a}$$\in \mathbb{Z}$ là 1 số nguyên.

 

Gọi $d$ là ước số của $a$ và $b$. Chứng minh rằng: $d\leq \sqrt{a+b}$

Vì $\frac{a+1}{b}+\frac{b+1}{a}=\frac{a^{2}+b^{2}+a+b}{ab}$ là số nguyên 

$\Rightarrow (a^{2}+b^{2}+a+b)\vdots ab$

Mà ta có $d=(a,b)$ nên $ab\vdots d^{2}$

Suy ra $(a^{2}+b^{2}+a+b)\vdots d^{2}$ và $(a^{2}+b^{2})\vdots d^{2}$

Vậy nên $(a+b)\vdots d^{2}$ $\Rightarrow a+b\geq d^{2}$ suy ra đpcm




#554901 Chứng minh $\sum a^{2}b^{2} +6abc\geq -3...

Gửi bởi Pham Le Yen Nhi trong 18-04-2015 - 20:25

Cho các số thực $a,b,c$ thỏa $a+b+c=0$. Chứng minh $a^{2}b^{2}+b^{2}c^{2}+c^{2}a^{2}+6abc \geq -3$




#554899 Chứng minh rằng $\frac{HP}{HQ}=\frac{...

Gửi bởi Pham Le Yen Nhi trong 18-04-2015 - 20:20

Bài 1: Cho tam giác $ABC$ trực tâm $H$. Một đường thẳng bất kì qua H cắt AB,AC tại P,Q. Đường thẳng qua $H$ vuông góc $PQ$ cắt $BC$ tại $M$. Chứng minh rằng $\frac{HP}{HQ}=\frac{MB}{MC}$

Bài 2: Cho tứ giác $ABCD$ nội tiếp (O). $M,N$ là trung điểm $AB,CD$. Đường tròn ngoại tiếp tam giác $ANB$ cắt $CD$ tại $Q$, đường tròn ngoại tiếp tam giác $MCD$ cắt $AB$ tai $P$. Chứng minh rằng $AC,BD,PQ$ đồng quy.




#544103 $2(5x-3)\sqrt{x+1}+5(x+1)\sqrt{3-x}=3(5x+1...

Gửi bởi Pham Le Yen Nhi trong 14-02-2015 - 10:56

Giải phương trình

$2(5x-3)\sqrt{x+1}+5(x+1)\sqrt{3-x}=3(5x+1)$




#543835 Cho trước số nguyên dương n lẻ. Tại mỗi ô vuông của bàn cờ kích thước n.n ngư...

Gửi bởi Pham Le Yen Nhi trong 12-02-2015 - 00:07

Cho trước số nguyên dương n lẻ. Tại mỗi ô vuông của bàn cờ kích thước n.n người ta viết 1 số +1 hoặc -1. Gọi $a_{k}$ là tích của tất cả những số ghi trên hàng thứ k ( tính từ trên xuống) và $b_{k}$ là tích của tất cả những số ghi trên cột thứ k ( tính từ trái sang).
CMR với mọi cách điền số như trên, đều có: $a_{1}+a_{2}+...a_{n}+b_{1}+b_{2}+...b_{n}\neq 0$

Theo giả thiết ta có $a_{k},b_{k}$ đều bằng 1 hoặc -1

Giả sử $\sum a_{k}+\sum b_{k}=0$

Suy ra trong các số $a_{k},b_{k}$, số các số bằng 1 bằng số các số bằng -1

Mà $a_{1}a_{2}...a_{n}b_{1}b_{2}...b_{n}$ bằng bình phương của tích tất cả các số trong bảng nên bằng 1

Suy ra trong các số $a_{k},b_{k}$, số các số bằng -1 phải chẵn

Do đó số các số $a_{k},b_{k}$  là tổng của hai số chẵn bằng nhau nên chia hết cho 4

Mà bảng có n hàng, n cột, nên số các số là 2n, n lẻ $\Rightarrow$ 2n không chia hết cho 4

Vậy ta có đpcm




#542983 Đề thi chọn đội tuyển Olympic 30-4 THPT chuyên Lê Hồng Phong TP.HCM 2014-2015

Gửi bởi Pham Le Yen Nhi trong 04-02-2015 - 19:39

Bài 1: Giải phương trình:

$\sqrt{2x+15}=32x^{2}+32x-20$

Bài 2: $R^{+}$ là tập hợp các số thực dương. Tìm tất cả các hàm số $f$: $R^{+}\rightarrow R^{+}$ thỏa

$f(x)f(y)=f(xy)+\frac{1}{x}+\frac{1}{y} \forall x,y\epsilon R^{+}$

Bài 3: Trong mặt phẳng tọa độ cho parabol (P): $y=-x^{2}+4px-p+1$ với p là một số hữu tỷ. Gọi S là diện tích tam giác có 2 đỉnh là 2 giao điểm của parabol (P) với trục hoành và đỉnh thứ ba là đỉnh của parabol (P). Tìm tất cả các số hữu tỷ p để S là một số nguyên.

Bài 4: Cho $a,b,c$ là các số thực không âm thỏa mãn $(a+b+2c)(b+c+2a)(c+a+2b)=1$

Chứng minh rằng: 

$\frac{a}{b(4c+15)(b+2c)^{2}}\frac{b}{c(4a+15)(c+2a)^{2}}\frac{c}{a(4b+15)(a+2b)^{2}}\geq \frac{1}{3}$

Bài 5: Cho các số nguyên dương $k_{1}<k_{2}<...<k_{n}<k_{n+1}<...$, trong đó không có 2 số liên tiếp. Đặt $S_{n}=k_{1}+k_{2}+...+k_{n}$. Chứng minh rằng $\left [S_{n};S_{n+1} \right )$ có ít nhất một số chính phương với mọi n.

Bài 6 : Cho D là điểm nằm trên cạnh BC của tam giác ABC sao cho $\angle CAD=\angle CBA$. Một đường tròn tâm O qua hai điểm B,D cắt cạnh AB,AD lần lượt tại E,F. Đường thẳng BF và DE cắt nhau tại G. M là trung điểm AG. Chứng minh CM vuông góc với AO.

 




#541305 Chứng minh $AA',BB',CC'$ đồng quy tại một điểm

Gửi bởi Pham Le Yen Nhi trong 19-01-2015 - 16:30

Cho $\Delta ABC$. Đường tròn (O) cắt cạnh $BC$ tại $X,Y$; cắt cạnh $AC$ tại $Z,T$; cắt cạnh $AB$ tại $U,V$ sao cho $X,Y,Z,T,U,V$ là các đỉnh của một lục giác lồi, $XT\cap YU=A',ZV\cap TX=B',UY\cap VZ=C'$. Chứng minh $AA',BB',CC'$ đồng quy tại một điểm.




#541055 $\frac{x^{2}-13x+22}{2x+(x-5)\sqrt...

Gửi bởi Pham Le Yen Nhi trong 16-01-2015 - 22:06

$\frac{x^{2}-13x+22}{2x+(x-5)\sqrt{x-2}-4}:\sqrt{x-2}=\frac{1}{2}$ (1)

ĐK: $x> 2$

$(1)\Leftrightarrow \frac{\sqrt{x-2}(x-11)}{2x+(x-5)\sqrt{x-2}-4}=\frac{1}{2}$

$\Leftrightarrow \frac{\sqrt{x-2}(x-11)}{2(\sqrt{x-2})^{2}+(x-5)\sqrt{x-2}}=\frac{1}{2}$

$\Leftrightarrow \frac{x-11}{2\sqrt{x-2}+x-5}=\frac{1}{2}$

$\Leftrightarrow x-17=2\sqrt{x-2}$

$\Leftrightarrow \left\{\begin{matrix} x\geq 17\\ (x-17)^{2}=4(x-2) \end{matrix}\right.$

$\Leftrightarrow x=27$