Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Pham Le Yen Nhi

Đăng ký: 26-11-2012
Offline Đăng nhập: 12-10-2018 - 20:04
***--

Chủ đề của tôi gửi

$4^{x}+4^{y}+4^{z}+ ln(x^{4}+y^{4...

06-02-2016 - 19:44

Cho $0<(x+y)^{2}+(y+z)^{2}+(z+x)^{2}\leq 2$

Tìm GTLN của

$4^{x}+4^{y}+4^{z}+ ln(x^{4}+y^{4}+z^{4})-\frac{3}{4}(x+y+z)^{4}$


Hỏi có bao nhiêu cách chia n điểm trên đường thẳng thành các tập gồm 1 hoặc 2 điểm kề n...

21-07-2015 - 21:21

Hỏi có bao nhiêu cách chia n điểm trên đường thẳng thành các tập gồm 1 hoặc 2 điểm kề nhau?


$\sqrt{\frac{7}4{\sqrt{x}-1+x^{2...

08-05-2015 - 00:25

Giải phương trình

$\sqrt{\frac{7}4{\sqrt{x}-1+x^{2}}}=(1-\sqrt{x})^{2}$


Chứng minh $\sum a^{2}b^{2} +6abc\geq -3$

18-04-2015 - 20:25

Cho các số thực $a,b,c$ thỏa $a+b+c=0$. Chứng minh $a^{2}b^{2}+b^{2}c^{2}+c^{2}a^{2}+6abc \geq -3$


Chứng minh rằng $\frac{HP}{HQ}=\frac{MB}...

18-04-2015 - 20:20

Bài 1: Cho tam giác $ABC$ trực tâm $H$. Một đường thẳng bất kì qua H cắt AB,AC tại P,Q. Đường thẳng qua $H$ vuông góc $PQ$ cắt $BC$ tại $M$. Chứng minh rằng $\frac{HP}{HQ}=\frac{MB}{MC}$

Bài 2: Cho tứ giác $ABCD$ nội tiếp (O). $M,N$ là trung điểm $AB,CD$. Đường tròn ngoại tiếp tam giác $ANB$ cắt $CD$ tại $Q$, đường tròn ngoại tiếp tam giác $MCD$ cắt $AB$ tai $P$. Chứng minh rằng $AC,BD,PQ$ đồng quy.