Đến nội dung


Chú ý

Do trục trặc kĩ thuật nên diễn đàn đã không truy cập được trong ít ngày vừa qua, mong các bạn thông cảm.

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


phanha

Đăng ký: 15-12-2012
Offline Đăng nhập: 14-02-2014 - 00:14
***--

Bài viết của tôi gửi

Trong chủ đề: Phương pháp phân tích thành nhân tử với 2 biến bằng CASIO

03-12-2013 - 22:16

Sau đây là một thủ thuật CASIO do mình (Bùi Thế Việt) nghĩ ra, và có thể bạn cũng nghĩ ra được nó nếu bạn làm nhiều Phương Trình, Hệ Phương Trình, ...
Lưu ý: Thủ thuật này chỉ áp dụng cho biểu thức 2 ẩn bậc không quá cao (giới hạn bậc 4) cho một ẩn ...
Ví dụ như: $x^3y^3+10x^2-20xy^3+1$ vẫn nằm trong phạm vi của phương pháp này ... Do đó ứng dụng thực tiễn của phương pháp này là khá lớn, thuận tiện cho việc giải Phương trình và Hệ phương trình.
Yêu cầu: Đọc qua Thủ Thuật 1 : CÁC THỦ THUẬT CASIO
Ý tưởng: Nhận xét sơ bộ một biểu thức cần phân tích, xem bậc cái nào cao nhất, cho nó bằng $1000$ rồi phân tích
_______________________________________

Ví Dụ 1: $A=x^2+xy-2y^2+3x+36y-130$
Bước làm: 
Bước 1: Nhìn thấy bậc của $x$ và $y$ đều bằng $2$ nên mình chọn cái nào cũng được
Bước 2: Cho $y=1000$, ta được $A=x^2+1003x-1964130$
Bước 3: Phân tích nhân tử nó: $A=(x+1990)(x-987)$
Bước 4: Áp dụng thủ thuật 1, ta được: $1990=2y-10$ và $-987=-y+13$
Bước 5: Thế vào ta được $A=(x+2y-10)(x-y+13)$
Dễ không nào ???

Ví Dụ 2: $B=6x^2y-13xy^2+2y^3-18x^2+10xy-3y^2+87x-14y+15$
Bước 1: Bậc của $x$ nhỏ hơn
Bước 2: Cho $y=1000$, ta được $B=5982\,{x}^{2}-12989913\,x+1996986015$
Bước 3: Phân tích nhân tử: $B=2991\, \left( 2\,x-333 \right)  \left( x-2005 \right) $
Bước 4: Có $2991=3y-9, 333=\frac{999}{3}=\frac{y-1}{3},2005=2y+5$
Bước 5: Ta được: $B=(3y-9)(2x-\frac{y-1}{3})(x-2y-5)=(y-3)(x-2y-5)(6x-y+1)$
OK?

Ví Dụ 3: $C={x}^{3}-3\,x{y}^{2}-2\,{y}^{3}-7\,{x}^{2}+10\,xy+17\,{y}^{2}+8\,x-40\,y+16$
Bước 1: Bậc như nhau
Bước 2: Cho $y=1000$, ta được $C={x}^{3}-7\,{x}^{2}-2989992\,x-1983039984$
Bước 3: Phân tích: $C=(x-1999)(x+996)^2$
Bước 4: Thế $1999=2y-1$ và $996=y-4$
Bước 5: $C=(x-2y+1)(x+y-4)^2$

Ví Dụ 4: $D=2\,{x}^{2}{y}^{2}+{x}^{3}+2\,{y}^{3}+4\,{x}^{2}+xy+6\,{y}^{2}+3\,x+4\,y+12$
Bước 1: Bậc như nhau
Bước 2: Cho $y=1000$ ta được $D={x}^{3}+2000004\,{x}^{2}+1003\,x+2006004012$
Bước 3: Phân tích: $D=\left( x+2000004 \right)  \left( {x}^{2}+1003 \right) $
Bước 4: Thế $2000004=2y^2+4$ và $1003=y+3$
Bước 5: $D=(x^2+y+3)(2y^2+x+4)$

 

Ví Dụ 5: $E={x}^{3}y+2\,{x}^{2}{y}^{2}+6\,{x}^{3}+11\,{x}^{2}y-x{y}^{2}-6\,{x}^{2}-7\,xy-{y}^{2}-6\,x-5\,y+6$
Bước 1: Bậc của $y$ nhỏ hơn
Bước 2: Cho $x=1000$ ta được $E=1998999\,{y}^{2}+1010992995\,y+5993994006$
Bước 3: Phân tích: $E=2997\, \left( 667\,y+333333 \right)  \left( y+6 \right)$
Bước 4: "Ảo hóa" nhân tử: $E=999(2001y+999999)(y+6)$
Bước 5: Thế $999=x-1,2001=2x+1,999999=x^2-1$
Bước 6: $E=(x-1)((2x+1)y+x^2-1)(y+6)=(x-1)(y+6)(x^2+2xy+y-1)$

 

Ví Dụ 6: $F=6\,{x}^{4}y+12\,{x}^{3}{y}^{2}+5\,{x}^{3}y-5\,{x}^{2}{y}^{2}+6\,x{y}^{3}+{x}^{3}+7\,{x}^{2}y+4\,x{y}^{2}-3\,{y}^{3}-2\,{x}^{2}-8\,xy+3\,{y}^{2}-2\,x+3\,y-3$
Bước 1: Bậc $y$ nhỏ hơn
Bước 2: Cho $x=1000$ ta được: $$F=5997\,{y}^{3}+11995004003\,{y}^{2}+6005006992003\,y+997997997$$
Bước 3: Phân tích $F= \left( 1999\,y+1001001 \right)  \left( 3\,{y}^{2}+5999000\,y+997 \right) $
Bước 4: Thế $1999=2x-1;1001001=x^2+x+1;5999000=6x^2-x,997=x-3$
Bước 5: Ta được $$F=((2x-1) y+x^2+x+1)(3y^2+(6x^2-x)y+x-3)\\=\left( {x}^{2}+2\,xy+x-y+1 \right)  \left( 6\,{x}^{2}y-xy+3\,{y}^{2}+x-3 \right)$$

 

______________________________
Tạm ổn rồi, ai không hiểu gì thì cứ hỏi

cho em hỏi là cái chỗ ảo hóa phải làm như nào ạ.cho ct cụ thể dk k ạ

ví dụ:x^3+999x^2-3997999x-3995999001 với y=1000 rồi chỉ cách ảo hóa cho em dk k ạ


Trong chủ đề: định lý menêlauyt

01-12-2013 - 15:50

định lí Menelaus sao mà phải chứng minh dài dòng thế


Trong chủ đề: Đề thi học sinh giỏi 9 ( cấp huyện )

03-11-2013 - 10:02

2 câu bất đẳng thức dễ quá


Trong chủ đề: Lớp 10 chuyên thì cần những sách nào để học môn Đại và Số học

03-11-2013 - 09:45

TomPhan

cậu là Phan Anh VŨ à


Trong chủ đề: Tìm giá trị nhỏ nhất của : P=$\frac{8a^{2}+b...

30-10-2013 - 16:08

DucHuyen1604  

Nguyễn Minh Đức:đề thi hsg tỉnh lớp 9 năm nào đó của Hà Tĩnh.cách làm của cậu giống hệt cách của tớ trong thi thử lần 2 quá