Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


maitra1999

Đăng ký: 16-12-2012
Offline Đăng nhập: 22-10-2015 - 22:14
-----

Bài viết của tôi gửi

Trong chủ đề: CM: ba điểm $A,I,M$ thẳng hàng

14-04-2013 - 11:35

mình bị vướng câu c)


Trong chủ đề: Tính giá trị biểu thức dựa vào $\frac{1}{x...

13-04-2013 - 16:41

trời dễ mình có cách khác nè 

$\sum \frac{xy}{z^{2}}=xyz.\sum \frac{1}{x^{3}}$áp dụng đẳng thức a+b+c=0$\rightarrow a^{3}+b^{3}+c^{3}=3abc\rightarrow \sum \frac{1}{x^{3}}=\frac{3}{yzx}\rightarrow xyz.\sum \frac{1}{x^{3}}=3

e mới học lớp 8 a ơi. học tới bất đẳng thức là max rồi.


Trong chủ đề: Tính giá trị biểu thức dựa vào $\frac{1}{x...

07-04-2013 - 14:03

Bạn sai ở chỗ biến đổi quy đồng.

Phải là $\frac{xy}{z^{2}}+\frac{yz}{x^{2}}+\frac{xz}{y^{2}}=\frac{x^{2}y^{2}+y^{2}z^{2}+x^{2}z^{2}}{x^{2}y^{2}z^{2}}$

À! Thì ra vậy, ẩu quá. Mà hình như bạn nhầm rồi, chỗ đó phải là mũ 3 chứ nhỉ: $\frac{xy}{z^{2}}+\frac{yz}{x^{2}}+\frac{xz}{y^{2}}=\frac{x^{3}y^{3}+y^{3}z^{3}+x^{3}z^{3}}{x^{2}y^{2}z^{2}}$


Trong chủ đề: Tính giá trị biểu thức dựa vào $\frac{1}{x...

07-04-2013 - 13:23

Ta có:

$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0 \Leftrightarrow xy+yz+zx=0$

 

Áp dụng hằng đảng thức $a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca),$ ta có:

 

$x^3y^3+y^3z^3+z^3x^3-3x^2y^2z^2=$

$=(xy+yz+zx)(x^2y^2+y^2z^2+z^2x^2-xy^2z-xyz^2-x^2yz)$

 

Mà $xy+yz+zx=0$ nên $x^3y^3+y^3z^3+z^3x^3-3x^2y^2z^2=0 \Leftrightarrow x^3y^3+y^3z^3+z^3x^3=3x^2y^2z^2$ 

 

Ta có:

$\frac{yz}{x^{2}}+\frac{zx}{y^{2}}+\frac{xy}{z^{2}}=\frac{y^3z^3+z^3x^3+x^3y^3}{x^2y^2z^2}=\frac{3x^2y^2z^2}{x^2y^2z^2}=3$

Mình lại giải ra bằng 0 nhưng không biết sai chỗ nào. bạn xem giùm mình nhé:

Ta có:$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0 \Leftrightarrow xy+yz+zx=0$.

Ta lại có: $\frac{yz}{x^{2}}+\frac{zx}{y^{2}}+\frac{xy}{z^{2}}=\frac{x^{2}y^{3}z^{3}+y^{2}z^{3}x^{3}+z^{2}x^{3}y^{3}}{x^{2}y^{2}z^{2}}=\frac{x^{2}y^{2}z^{2}(yz+zx+xy)}{x^{2}y^{2}z^{2}}= yz+zx+xy=0$


Trong chủ đề: Chứng minh $A,G,H$ thẳng hàng

17-12-2012 - 18:26

Lớp 8 chưa học Thales (Ta-lét) hả em?

chưa chị ơi