Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


babymath

Đăng ký: 24-02-2013
Offline Đăng nhập: 28-09-2014 - 08:48
-----

#401266 Ôn thi Olympic Toán học sinh viên 2015 [Giải tích]

Gửi bởi babymath trong 02-03-2013 - 14:17

Bài 43:Cho hàm $f:[ a,b]\to\mathbb{R}$ khả vi 3 lần trên$[a,b]$ với $f(a)=f(b)$.Đặt $M=\sup_{x\in [a,b]}|f'''(x)|$ Chúng minh rằng
$$\left|\int\limits_{a}^{\frac{a+b}{2}} f(x)dx - \int\limits_{\frac{a+b}{2}}^{b} f(x)dx\right| \leq \dfrac{(b-a)^4 M}{192} $$


#400622 Xét tính hội tụ của dãy $x_{n+2}=-\dfrac{1}...

Gửi bởi babymath trong 28-02-2013 - 10:13

Xét xem dãy sau có hội tụ không và tìm giới hạn (nếu có)
$x_0=a\in\mathbb{R},x_1=b\in\mathbb{R},x_{n+2}=-\dfrac{1}{2}\left(x_{n+1}-x_{n}^2\right)^2+x_{n}^4\;\forall n\in\mathbb{N} $ và $|x_n|\leq \dfrac{3}{4},\forall n\in\mathbb{N}$


#400027 Cho A là ma trận lũy linh, chứng minh $A^{n}=0$

Gửi bởi babymath trong 25-02-2013 - 21:50

Mình không hiểu từ chỗ ''$q(x)=x^k$ , suy ra UCLN của $p$ và $q$ có dạng $r(x)=x^r \;\;, r \in \mathbb{N}^*$ , hơn nữa, do $deg p =n$ nên $deg r \le n$'' sao lại suy ra $A^n=0$
Bạn chỉ giúp chỗ này với