Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


xuananh10

Đăng ký: 09-03-2013
Offline Đăng nhập: 26-07-2014 - 07:25
-----

Bài viết của tôi gửi

Trong chủ đề: Topic về số học, các bài toán về số học.

21-10-2013 - 17:19

Hình như có sẵn công thức của hai hàm số học này, chỉ cần ráp vào cộng thêm chút biến đổi là được thì phải (Theo ý kiến bản thân)... :icon6: Chưa biết có đúng ko nhưng trước mắt hướng giải là như vậy!!!

 Hình như không có công thức của $P(n)$ mà chỉ có $P(n)\approx \frac{1}{4\sqrt{3}}e^{\Pi \sqrt{\frac{2n}{3}}}$  :lol:


Trong chủ đề: Topic về số học, các bài toán về số học.

12-10-2013 - 17:38

Bài 52.

Gọi $P(n)$ là số phân hoạch nguyên n

$\sigma \left ( n \right )$ là tổng tất cả các ước nguyên dương của n

CMR$nP(n)=\sigma (n)+\sigma (n-1)P(1)+ ...+\sigma (1)P(n-1)$


Trong chủ đề: Xin tài liệu số học

31-07-2013 - 20:00

File gửi kèm  104_Titu_Number_Theory_Problems.pdf   1.05MB   467 Số lần tảiFile gửi kèm  LTE.pdf   210.24K   50 Số lần tảiFile gửi kèm  Số học.pdf   250.05K   67 Số lần tải


Trong chủ đề: $(5^{p}-2^{p})(5^{q}-5^{q})...

22-07-2013 - 17:17

Tìm tất cả các số nguyên tố p, q sao cho $(5^{p}-2^{p})(5^{q}-5^{q})\vdots p.q$.

hình như đề này có vấn đề  :icon13:  :icon13:  :icon13: Phải là $(5^{p}-2^{p})(5^{q}-2^{q})\vdots p.q$ mới đung chứ nhỉ.


Trong chủ đề: Topic về số học, các bài toán về số học.

21-07-2013 - 16:09

Bài 36: Cho số nguyên dương n và cho hai số nguyên nguyên tố cùng nhau a, b lớn hơn 1. Giả sử p, q là hai ước lẻ lớn hơn 1 của $a^{6^{n}}+b^{6^{n}}$. Hãy tìm số dư trong phép chia $p^{6^{n}}+q^{6^{n}}$ cho $6.12^{n}$.

Bổ đề 1.Nếu d là ước nguyên tố lẻ của $a^{6^{n}}+b^{6^{n}}$ thì $d\equiv 1\left ( mod 2^{n+1} \right )$

Bổ đề 2. Nếu $x\equiv 1\left ( mod c^{k} \right )$ thì$x^{c^{m}}\equiv 1\left ( modc^{m+k} \right )$

 Trở lại bài toán ta có vì p,q là ước nguyên tố lẻ của $a^{6^{n}}+b^{6^{n}}$ nên từ bổ đề 1 suy ra$p^{6^{n}}\equiv q^{6^{n}}\equiv 1\left ( mod 2^{n+1} \right )$                                                                                              .1.

Vì $\left (a,b \right )= 1$ nên$p^{6^{n}}+q^{6^{n}}\equiv 0\left ( mod 3 \right )$.Từ đó $\left (p,3 \right )=\left (q,3 \right )= 1$ vì thế$p^{2^{n}}\equiv q^{2^{n}}\equiv 1\left ( mod 3 \right )$ .theo bổ đề 2 ta có$p^{6^{n}}\equiv q^{6^{n}}\equiv 1\left ( mod 3^{n+1} \right )$       .2.

Từ .1. và .2. và do 2 va 3 nguyên tố cùng nhau nên $p^{6^{n}}\equiv q^{6^{n}}\equiv 1\left ( mod 6.\left ( 12 \right )^{n} \right )$.Do đó

$p^{6^{n}}+ q^{6^{n}}\equiv 2\left ( mod 6.\left ( 12 \right )^{n} \right )$

Vậy phần dư cần tìm là 2