Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Yuri

Đăng ký: 06-04-2013
Offline Đăng nhập: 20-08-2015 - 23:16
-----

Bài viết của tôi gửi

Trong chủ đề: giải bài toán bằng cách lập phương trinh

09-05-2013 - 20:25

bài toán là như thế này :"2 người cùng làm chung một công việc dự định trong 12h thì xong . ho làm chung với nhau được 8h thì người thứ nhất nghỉ, còn người thứ 2 cứ tiếp tục làm . do cố gắng tăng năng suất gấp đôi nên người thứ hai đã làm xong công việc trong 3h20'. hỏi nếu mỗi người thợ ấy làm một mình với năng suất dự định ban đầu thì phải mất bao nhiêu lâu để làm xong công viêc nói trên ?

Gọi năng suất dự định mỗi người lần lượt là x và y (ĐK: x>o;y>0) (công việc).

Vì 2 người cùng làm chung công việc dự định trong 12h thì xong 

=> Số việc ban đầu cần làm là:12(x+y) (công việc).(1)

vì họ làm chung được 8h thi người thứ nhất nghỉ

=>Số công việc thực tế hai người làm chung là:8(x+y) (công việc).(2)

vì người thứ cố gắng tăng năng suất và hoàn thành phần công việc còn lại trong 3h20'=$\frac{10}{3}$ h

=>phần công viêc người thứ 2 phải làm một mình là: $\frac{10}{3}$ .2y =$\frac{20}{3}$y (công việc)(3)

Từ (1),(2) và (3) ta có phương trình:8(x+y)+$\frac{20}{3}$y=12(x+y)

                                                   <=>24(x+y)+20y=36(x+y)

                                                   <=>20y              =12(x+y)

                                                   <=>20y              =12x+12y

                                                   <=>8y                =12x

                                                   <=>y                  =$\frac{3}{2}$x

                                                    =>12(x+y)= 20y=30x

=>người thứ nhất làm trong 30h thì xong công việc;người thứ hai làm trong 20h thì xong công việc.

Vậy: Người thứ nhất hoàn thành công việc một mình trong 30h

        Người thứ hai hoàn thành công việc một mình trong 20h.


Trong chủ đề: $\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}=5...

13-04-2013 - 16:01

Giải phương trình:
$$\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}=5\sqrt{x+1}$$

ĐKXĐ:x$\geq$5

$\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}=5\sqrt{x+1}$

$<=>\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}-5\sqrt{x+1}=0$

$<=>\sqrt{5x^2+14x+9}-7\sqrt{x-1}+2\sqrt{x-1}-\sqrt{x^2-x-20}=0$(1)

Vì $x\geq 5=>\left\{\begin{matrix} 5x^2\geq 125 & & \\9x\geq 45 & & \end{matrix}\right.$ $=>5x^2+9x+9\geq 179 $                                                                                                           $=>\sqrt{5x^2+9x+9}\geq \sqrt{179}>0$

Mà $7\sqrt{x+1}\geq7 \sqrt{5+1}= 7\sqrt{6}> 0$

=>$\sqrt{5x^2+14x+9}+7\sqrt{x+1}>0$

Vì $\left\{\begin{matrix} 2\sqrt{x+1}\geq 2\sqrt{5+1}=2\sqrt{6}> 0 & & \\\sqrt{x^2-x-20}\geq 0 & & \end{matrix}\right.$

=>$2\sqrt{x+1}+\sqrt{x^2-x-20}>0$

Phương trình (1)<=>$\frac{(\sqrt{5x^2+14x+9}-7\sqrt{x+1})(\sqrt{5x^2+14x+9}+7\sqrt{x+1})}{\sqrt{5x^2+14x+9}+7\sqrt{x+1}}+\frac{(2\sqrt{x+1}-\sqrt{x^2-x-20})(2\sqrt{x+1}+\sqrt{x^2-x-20})}{2\sqrt{x+1}+\sqrt{x^2-x-20}}=0$

<=>$\frac{5x^2-35x-40}{\sqrt{5x^2+14x+9}+7\sqrt{x+1}}+\frac{x^2-5x-24}{2\sqrt{x+1}+\sqrt{x^2-x-20}}=0$

<=>$\frac{(x-8)(5x+5)}{\sqrt{5x^2+14x+9}+7\sqrt{x+1}}+\frac{(x-8)(x-3)}{2\sqrt{x+1}+\sqrt{x^2-x-20}}=0$

<=>$(x-8)[\frac{5x+5}{\sqrt{5x^2+14x+9}+7\sqrt{x+1}}+\frac{x-3}{2\sqrt{x+1}+\sqrt{x^2-x-20}}]=0$(a)

Mà x$\geq$5=>$\frac{5x+5}{\sqrt{5x^2+14x+9}+7\sqrt{x+1}}+\frac{x-3}{2\sqrt{x+1}+\sqrt{x^2-x-20}}> 0$(b)

Từ (a) và (b) => x-8=0 <=> x=8(Thoả mãn ĐKXĐ)

Vậy phương trình đã cho có nghiệm duy nhất là x=8.


Trong chủ đề: $4xy+4(x^2+y^2)+\dfrac{3}{(x+y)^2}=\df...

07-04-2013 - 09:15

$\left\{\begin{matrix} 4xy+4({x^2}+y^2)+\frac{3}{(x+y)^2}=\frac{85}{3} & & \\2x+\frac{1}{x+y}=\frac{13}{3} & & \end{matrix}\right.$                                                                                                                              

$<=>\left\{\begin{matrix} 4xy+4{x^2}+4y^2+\frac{3}{(x+y)^2}=\frac{85}{3} & & \\2x+\frac{1}{x+y}=\frac{13}{3} & & \end{matrix}\right.$

$<=>\left\{\begin{matrix} 3(x+y)^2+(x-y)^2+\frac{3}{(x+y)^2}=\frac{85}{3} & & \\x+y+x-y+\frac{1}{x+y}=\frac{13}{3} & & \end{matrix}\right.$

Đặt x+y=a; x-y=b.Ta có hệ phương trình:

$\left\{\begin{matrix} 3a^2+b^2+\frac{3}{a^2}=\frac{85}{3} & & \\a+b+\frac{1}{a}=\frac{13}{3} & & \end{matrix}\right.$

$<=>\left\{\begin{matrix} 3(a^2+\frac{1}{a^2})+b^2=\frac{85}{3} & & \\a+\frac{1}{a}=\frac{13}{3}-b & & \end{matrix}\right.$                                                                                                                                  

$<=>\left\{\begin{matrix} 3[(a+\frac{1}{a})^2-2.a.\frac{1}{a}]+b^2=\frac{85}{3} & & \\a+\frac{1}{a}=\frac{13}{3}-b & & \end{matrix}\right.$                                                                                                                                 

$<=>\left\{\begin{matrix} 3(a+\frac{1}{a})^2-6+b^2=\frac{85}{3} & & \\a+\frac{1}{a}=\frac{13}{3}-b & & \end{matrix}\right.$

$<=>\left\{\begin{matrix} 3(a+\frac{1}{a})^2+b^2=\frac{103}{3} & & \\a+\frac{1}{a}=\frac{13}{3}-b & & \end{matrix}\right.$

$<=>\left\{\begin{matrix} 3(\frac{13}{3}-b)^2+b^2=\frac{103}{3} & & \\a+\frac{1}{a}=\frac{13}{3}-b & & \end{matrix}\right.$

$<=>\left\{\begin{matrix} 3(\frac{169}{9}-\frac{26}{3}b+b^2)+b^2=\frac{103}{3} & & \\a+\frac{1}{a}=\frac{13}{3}-b & & \end{matrix}\right.$

$<=>\left\{\begin{matrix} \frac{169}{3}-26b+4b^2=\frac{103}{3} & & \\a+\frac{1}{a}=\frac{13}{3}-b & & \end{matrix}\right.$

$<=>\left\{\begin{matrix} 4b^2-26b+22=0 & & \\a+\frac{1}{a}=\frac{13}{3}-b & & \end{matrix}\right.$

$<=>\left\{\begin{matrix} 2(b-1)(2b-11)=0 & & \\a+\frac{1}{a}=\frac{13}{3}-b & & \end{matrix}\right.$

$<=>\left\{\begin{matrix} \begin{bmatrix} b-1=0 & & \\2b-11=0 & & \end{bmatrix} & & \\a+\frac{1}{a}=\frac{13}{3}-b & & \end{matrix}\right.$

$<=>\left\{\begin{matrix} \begin{bmatrix} b=1 & & \\b=\frac{11}{2} & & \end{bmatrix} & & \\a+\frac{1}{a}=\frac{13}{3}-b & & \end{matrix}\right.$

.Với b=1 ta có:a+$\frac{1}{a}=\frac{13}{3}-1$ 

$<=>a^2-\frac{10}{3}a-1=0$

$<=>3a^2-10a+3=0$

$<=>(a-3)(3a-1)=0$

$<=>\begin{bmatrix} a-3=0 & & \\3a-1=0 & & \end{bmatrix}$

$\begin{bmatrix} a=3 & & \\a=\frac{1}{3} & & \end{bmatrix}$

*với a=3 và b=1 ta có hê phương trình:

$\left\{\begin{matrix} x+y=3 & & \\x-y=1 & & \end{matrix}\right.$

$<=>\left\{\begin{matrix} x=2 & & \\y=1 & & \end{matrix}\right.$

Với a=$\frac{1}{3}$ và b=1 ta có hệ phương trình:

$\left\{\begin{matrix} x+y=\frac{1}{3} & & \\x-y=1 & & \end{matrix}\right.$

$<=>\left\{\begin{matrix} x=\frac{2}{3} & & \\y=\frac{-1}{3} & & \end{matrix}\right.$

Với b = $\frac{11}{2}$ ta có: a+$\frac{1}{a}=\frac{13}{3}-\frac{11}{2}$

$<=>a+\frac{1}{a}=\frac{-7}{6}$

$<=>^{a^2}+\frac{7}{6}a+1=0$

$<=>6{a^2}+7a+6=0$

$<=>36{a^2}+42a+36=0$

$<=>{(6a)^2}+2.6a.\frac{7}{2}+\frac{49}{4}+\frac{95}{4}=0$

$<=>(6a+\frac{7}{2})^2+\frac{95}{4}=0 (vô nghiệm)$

Vậy hệ phương trình đã cho có tập nghiệm$ (x;y)\epsilon \left \{(2;1);(\frac{2}{3};\frac{-1}{3}) \right \}$