Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


trananh2771998

Đăng ký: 16-04-2013
Offline Đăng nhập: 26-04-2014 - 10:08
***--

Bài viết của tôi gửi

Trong chủ đề: $f(x+y)+f(x-y)=2f(x)+2f(y)$

12-02-2014 - 22:05

Cho x=y ta được f(2x)=4f(x)

Cho x=2y ta được f(3x)=9f(x)

Cho x=y=0 ta được f(0)=0

Ta chứng minh quy nạp : f(nx)=$n^{2}$f(x) (1) ($n\epsilon N*$)

Với n=1 đúng

Giả sử đúng tới n .Ta có :

f((n+1)x)=f(nx+x)= -f((n-1)x) + 2f(nx) +2f(x) =$-(n-1)^{2}f(x)+ 2n^{2}f(x)+2f(x)=(n+1)^{2}f(x)$

Vậy (1) cũng đúng với n+1 ($n\epsilon N*$)

Từ đó ta có : f(1)=f($n\frac{1}{n}$)=$n^{2}f(\frac{1}{n})$ suy ra f($\frac{1}{n}$)=$\frac{f(1)}{n^{2}}$

tương tự f(m)=$n^{2}f(\frac{m}{n})$ suy ra $f(\frac{m}{n})=\frac{f(m)}{n^{2}}=\frac{m^{2}}{n^{2}}f(1)$

Tóm lại : f($\frac{m}{n}$)=($(\frac{m}{n})^{2}$)f(1)

Đặt f(1)=a suy ra f(x)=a$x^{2}$ với x>0 và x thuộc Q

với x<0 suy ra f(x)=f(-x)=a$(-x)^{2}$=a$(x)^{2}$

Vì f(0)=0 nên f(x)=a$x^{2}$

Thử lại thấy thoả mãn.Vậy f(x)=a$x^{2}$ với x thuộc Q với a là hằng số ($a\epsilon Q$) :icon6: :icon6: :icon6:


Trong chủ đề: Tìm nghiệm nguyên dương của phương trình: $2^{x}+1=y^...

02-01-2014 - 22:25

Ta có :$2^x=(y-1)(y+1)= > y-1=2^m,y+1=2^n= > 2^n-2^m=2= > 2^m(2^{n-m}-1)=1.2= > m=0,n=1= > y=1,x=1$

Mình thấy x=y=1 có thỏa mãn đâu


Trong chủ đề: China TST 2011

23-11-2013 - 23:08

http://www.artofprob...6a1f68#p2508288

Hình như ở trang cũng có một lời giải


Trong chủ đề: Đề thi chọn học sinh giỏi toán lớp 11-12 chuyên KHTN 2013-2014 (Vòng 1)

30-09-2013 - 15:32

Lời giải. Đặt $A=a^5$. Áp dụng bổ đề như bài này rồi ta suy ra $a-1 \equiv 1 \pmod{p}$ và $a^4+a^3+a^2+a+1 \equiv 1 \pmod{p}$ suy ra $p|30$. Do đó $p \in \{ 2;3;5 \}$.

P=31 cũng được mà Toàn.Cho $n=n^{2}=...=n^{p-1}=1$ Khi ấy A=32 :icon6:


Trong chủ đề: Giúp mình chọn trường

08-08-2013 - 09:35

Nếu bạn muốn nghiên cứu thì vote cho KHTN :icon6: :icon6: :icon6: :icon6: