Đến nội dung

ngoctruong236

ngoctruong236

Đăng ký: 06-07-2013
Offline Đăng nhập: 01-01-2016 - 13:57
***--

#481976 CMR:(AXP),(BYP),(CZP) đồng trục

Gửi bởi ngoctruong236 trong 08-02-2014 - 17:34

Cho tam giac ABC nội tiếp (O).
d la đường thẳng bất kỳ cắt BC,CA,AB tại X,Y,Z.P là hình chiếu của O trên d.CMR:
(AXP),(BYP),(CZP) đồng trục
P/s:
 



#479831 Chứng minh rằng $\frac{a}{13}=\frac{b...

Gửi bởi ngoctruong236 trong 29-01-2014 - 13:58

Gọi $R$ là bán kinh đường tròn ngoại tiếp $\Delta AKM,BLK,CML$.

Ta có: $KL=2RsinB,\; LM=2RsinC,\; MK=2RsinA$

$\Rightarrow \Delta ABC\sim \Delta KLM$

và $S_{AKM}=S_{BKL}=S_{CLM}=\frac{2}{9}S_{ABC}$

$\Rightarrow KM=\frac{1}{\sqrt{3}}a.$

Áp dụng định lí hàm số cos, ta có:  $a^2=b^2+c^2-2bccosA$

$\Rightarrow \frac{1}{3}a^2= \frac{4}{9}b^2+\frac{1}{9}c^2-2.\frac{2}{3}.\frac{1}{3}cosA$

$\Rightarrow a^2+c^2=2b^2.$

Bằng cách tương tự $\Rightarrow  b^2+c^2=2a^2,a^2+b^2=2c^2$

$\Rightarrow a=b=c$

$\Rightarrow \Delta ABC$ là tam giác đều (đpcm)

 

 

Hình gửi kèm

  • Capture.JPG



#479415 Chứng minh $E,F,Y,Z$ đồng viên.

Gửi bởi ngoctruong236 trong 27-01-2014 - 16:43

$\;Goi \;MN\cap BC=K. \;Ta \se \; CM:\;E,F,K \;thang \; hang.\; That \;vay \; :\;Ap \;dung \; dly\; Meneleuyt\; cho\;tam \;giac \;XBC \;voi \;(M,N,K) \;ta \;co: \frac{\overline{KC}}{\overline{KB}}.\frac{\overline{MB}}{\overline{MX}}.\frac{\overline{NX}}{\overline{NC}}=1\; . Mat\;khac \;duong \;tron \;noi \; tiep\;\Delta XBC \;tx \;BC \;tai \;D\rightarrow \;\frac{\overline{DB}}{\overline{DC}}.\frac{\overline{MB}}{\overline{MX}}.\frac{\overline{NX}}{\overline{NC}}=-1 \; va\;trong \; tam\; giac\;ABC \;co \;\frac{\overline{DB}}{\overline{DC}}.\frac{\overline{FB}}{\overline{FA}} .\frac{\overline{EA}}{\overline{EC}}=-1\rightarrow \;theo \; \;Meneleuyt \; thi\;E,F,K \; thang\; hang\; Tu \;day, \;ta \;co \;KD \; la\;tiep \;tuyen \;chung \; cua\;(ABC) \;va \;(XBC) \rightarrow KD^2=\overline{KM}.\overline{KN}=\overline{KF}.\overline{KE}\rightarrow \;4 \;diem \; \;E,F,M,N \;dong \;vien \; \rightarrow dpcm$

Hình gửi kèm

  • Capture.JPG



#479267 Chứng minh rằng $AD,BE,CF$ đồng quy.

Gửi bởi ngoctruong236 trong 26-01-2014 - 21:55

Bài làm :
Ta có I(MNOD) =-1

và đường đẳng giác đường AD cắt OI tại K

Khi đó A (MIKD) =-1 =I(MAKD)

Như vậy K là giao DM với OI

Dễ có $\Delta IKD$ ~ $\Delta OKM \Rightarrow \frac{IK}{KO} =\frac{IO}{R}$

Vậy K cố định

Tương tự với điểm đẳng giác CF ,BE 

Như vậy  AD .BE,CF đồng quy tại điểm mà điểm đẳng giác của điểm K .

------------

p/s cái cuối có thể chứng minh bằng ceva với tính chất 2 đường đẳng giác =,=!

Hình gửi kèm

  • ml` math.PNG



#479210 Chứng minh rằng $AD,BE,CF$ đồng quy.

Gửi bởi ngoctruong236 trong 26-01-2014 - 19:52

Đây là định lí Kariya.@@

Qua mathlinks hỏi thì người ta nói vậy,mở cuốn sách hình của MS ra thì thấy nó.

Ngoài ra không biết dùng desargue có chứng minh được không??

HÌnh như cậu nhầm,đ lý Kariya là:Cho tam giác ABC nhận I la tâm nội tiếp,Ở phía ngoài tam giác lấy các điểm M,N,P sao cho IM=IN=IP,va 3 duong nay tương ung vuong goc voi BC,CA,AB.CMR:AM,BN,CP đồng qui ....chứ ko phải bài này




#478796 Đường thẳng Euler của tam giác DEF đi qua một điểm cố định

Gửi bởi ngoctruong236 trong 24-01-2014 - 19:07

$$$\;Goi ; Ia\;,Ib, \;Ic \; theo\; thu\; tu\; la \; tam\;duong \;tron \;bang \;tiep \;cac \;goc \;A ,B,C cua tam giac ABC; .De\, dang \, CM \, duoc\, IbIc\, song\, song \, EF,IcIa song song FD,IaIb song song DE .Do do ton tai phep vi tu f ma bien Ia,Ib,Ic lan luot thanh D,E,F \rightarrow f \, bien \, duong \, thang\, Euler\, cua\, tam \, giac\, IaIbIc \, thanh \, duong \, thang\, Euler\, cua\, tam \, giac \, DEF \; Mat\, khac\, I \, nam \, tren\, duong\, thang\, Euler \, cua\, tam\, giac\, IaIbIc\, suy \, ra\, I\, nam\, tren\, duogn\, thang\, Euler \, cua \, tam\, giac\, DEF\, \rightarrow duong\, thang\, Euler\, cua \, tam \, giac \, DEF \, di\, qua\, I\, co \, dinh;$$$

Hình gửi kèm

  • Capture.JPG



#477256 Chứng minh rằng $BC,DE,AF$ đồng quy.

Gửi bởi ngoctruong236 trong 14-01-2014 - 18:52

$\; \;Goi \; J=\;AE\cap DF \;. \;Ta\, co:\Delta BIT\sim \Delta JHT \;\rightarrow \overline{IT}.\overline{TJ}=\overline{BT}.\overline{TH }=\overline{BI}.\overline{ID}=AI^2\rightarrow (AETJ)=-1\rightarrow C(AETJ)=-1\rightarrow (DFHJ)=-1= (AETJ)\rightarrow AF,DE,BC \, dong\, qui\rightarrow dpcm \;. \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \;$

Hình gửi kèm

  • math 1.JPG



#476771 Trận 1 - Số học

Gửi bởi ngoctruong236 trong 11-01-2014 - 22:57

$y =0 \Rightarrow x=1 $

Xét $ y \geq 1$

Ta có $x \geq y$ mà $x^2 =y^2 +\sqrt{y+1} \leq y^2 +2y +1 =(y+1)^2$ \Rightarrow y^2$

 

Bài làm chưa hoàn chỉnh.

$d=1$

$S=1$




#454826 Hệ thức lượng trong tam giác

Gửi bởi ngoctruong236 trong 03-10-2013 - 13:17

$\;Ap \; dung\;dly \; ham\; so\; sin\;trong \; \Delta BOC,\;ta \; co\;:R_{1}=\frac{BC}{2sin\angle BOC} =\frac{a}{2sin\left [ 180-\frac{\angle B+\angle C}{2} \right ]}= \frac{2RsinA}{2sin\frac{\angle B+\angle C}{2}}=\frac{2Rsin\frac{A}{2}cos\frac{A}{2}}{2cos\frac{A}{2}}=2Rsin\frac{A}{2},\;tuong \; tu\;cho \;R_{2} ,R_{3}\rightarrow R_{1}.R_{2}.R_{3}=8R^3sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}\;.Lai \;co \; r=4Rsin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}(\;bo \; de\;nay \;de \; ban\;tu \;CM\: nhe )\rightarrow \;R_{1}.R_{2}.R_{3}=2R^2r\rightarrow dpcm \; \;$




#454498 GTLN của $P=a+ab+2abc$ với $a+b+c=3$

Gửi bởi ngoctruong236 trong 01-10-2013 - 18:44

$\dpi{150} \;Su \;dung \;BDT \;AM-GM, \;ta \;co: \;ab+2abc=2ab(c+\frac{1}{2})\leq 2a(\frac{b+c+\frac{1}{2}}{2})^2=2a(\frac{7-2a}{4})^2. \;Nhu \;vay \;can \;CM: \; a+2a(\frac{7-2a}{4})^2\leq \frac{9}{2}(du doan min la \frac{9}{2})\Leftrightarrow (4-a)(2a-3)^2\geq 0(luon dung)\; .Dau\;= \;xay \;ra \; \Leftrightarrow \; (a,b,c)=(\frac{3}{2},1,\frac{1}{2})\; \; \; \; \; \; \; \; \; \; \;$




#448526 cho a,b,c >0 .CMR:

Gửi bởi ngoctruong236 trong 07-09-2013 - 20:11

$\;BDT \;can \;cm \;\Leftrightarrow \;(a+b+c)(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{a+c})\leq 3(a^2+b^2+c^2)\Leftrightarrow \left [ (a^2+b^2)+\frac{c(a^2+b^2)}{a+b} \right ] +\left [(b^2+c^2) +\frac{a(b^2+c^2)}{b+c} \right ]+\left [(c^2+a^2)+\frac{b(c^2+a^2)}{a+c} \right ]\leq 3(a^2+b^2+c^2)\Leftrightarrow \frac{c(a^2+b^2)}{a+b}+\frac{a(b^2+c^2)}{b+c}+\frac{b(a^2+c^2)}{a+c}\leq a^2+b^2+c^2\Leftrightarrow \left [c^2-\frac{c(a^2+b^2)}{a+b} \right ]+\left [a^2-\frac{a(b^2+c^2)}{b+c} \right ]+\left [ b^2-\frac{b(c^2+a^2)}{a+c} \right ]\geq 0\;\Leftrightarrow \frac{bc(b-c)+ba(b-a)}{c+a}+\frac{ca(c-a)+cb(c-b)}{a+b}+\frac{ab(a-b)+ac(a-c)}{b+c}\geq 0\Leftrightarrow \frac{ca(c-a)^2}{(a+b)(b+c)}+\frac{bc(b-c)^2}{(c+a)(a+b)}+\frac{ab(a-b)^2}{(b+c)(c+a)}\geq 0\rightarrow dpcm\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \;$




#446665 Cho d(n) la tat ca cac uoc so nguyen duong cua n

Gửi bởi ngoctruong236 trong 31-08-2013 - 21:05

$\:Tim \:cac \:so \:tu \:nhien \:n/d(n)^{3}=4n \: \: \: \:$




#445772 $\frac{1}{n+1}+\frac{1}{n+2...

Gửi bởi ngoctruong236 trong 27-08-2013 - 19:53

$\;Xet \;dk \;thu \; 2:\;Voi \;n=1,2,3 \;thi \;m< \frac{1}{4} (thay\: vao\: BDT\:la \:dc )\;.Voi \;n=4 \; thi\; m=\frac{1}{4}.\; Nhu\; vay\; ta\;se \;chon \;m=\frac{1}{4} \;va \;diem \;xuat \; \;phat \;qui \; nap\;la \;n=4 \;Voi \;n=4 \;thay \;vao \;BDt \;ta \; dc\; 1066<1071(thoa man).\;Gia \;su \;BDT \;dg \;voi \;n=k\rightarrow S_{k}=\frac{1}{k+1}+\frac{1}{k+2}+.....+\frac{1}{2k} <\frac{7}{10}-\frac{1}{4k}\;,ta \; phai\;Cm \;BDT \;dg \;voi \; n=k+1\; \;hay S_{k+1} =\frac{1}{k+2}+\frac{1}{k+3}+....+\frac{1}{2k+2}< \frac{7}{10}-\frac{1}{4(k+1)}.Theo\;gt \;qui \;nap \;ta \;co \;S_{k+1}=S_{k}-\frac{1}{k+1} +\frac{1}{2k+1}+\frac{1}{2k+2}=Sk+\frac{1}{2(k+1)(2k+1)}< \frac{7}{10}-\frac{1}{4k}+\frac{1}{2(k+1)(2k+1)}.\;Nhu \; vay\;chi \;can \;CM \;\frac{-1}{4k}+\frac{1}{2(k+1)(2k+1)}< \frac{-1}{4(k+1)}\Leftrightarrow \frac{2}{(k+1)(2k+1)}< \frac{1}{k(k+1)}\Leftrightarrow 2k<2k+1\Leftrightarrow 0<1\rightarrow Bai \;toan \;dc \;CM \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \;$




#445769 $\frac{1}{n+1}+\frac{1}{n+2...

Gửi bởi ngoctruong236 trong 27-08-2013 - 19:37

$\;Dat \;S_{k}=\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+...+\frac{1}{2n} \;. \; Neu\;giai \;bai \; toan\; bang\;p^2 \; qui\; nap\; thong\;thuong \;thi \;kho \;ma \;giai \;dc \;. \; Ta\;se \; tim\;1 \;so \;thuc \; m/BDT\;sau \; dung:\;\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+...+\frac{1}{2n}<\frac{7}{10}-\frac{m}{n} \; .So\; m\;phai \;thoa \; man\; 2\;dk: \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; (+)\;Buoc \;chuyen \;qui \;nap \;tu \;k \;sang \; k+1\;phai \; lam\; dc\; \; \; \; \; \; \; \; \(+); \;BDT \; tren\; phai\;dung \; voi\; gia\; tri\; dau\;cua \;n(co\:the \:\neq gia \:tri \:dau\:cua \:BDT \\:de \: bai ) \;.Xet \;dk \;1,ta \; co:S_{k+1}=Sk+\frac{1}{2(k+1)(2k+1)}< \frac{7}{10}-\frac{m}{k}+\frac{1}{2(k+1)(2k+1)}\Leftrightarrow \frac{1}{2(k+1)(2k+1)}+\frac{-m}{k}< \frac{-m}{k+1}\Leftrightarrow \frac{1}{2(k+1)(2k+1)}< \frac{m}{k(k+1)} \Leftrightarrow \;2m(2k+1)>k \Leftrightarrow (4m-1)k+2m>0\\;BDT \;cuoi \;nay \; dung\; voi\;moi \;k\Leftrightarrow m\geq \frac{1}{4} \; \; \; \; \; \; \; \; \; \; \; \;$




#440734 Chứng minh XT, YZ, OI cùng đi qua tâm đường tròn ngoại tiếp tam giác KZT.

Gửi bởi ngoctruong236 trong 06-08-2013 - 09:03

$\dpi{150} \:Day \:la \: cach\:lam \:cau \: c)\: cua\:minh. \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:Goi \:J \: la\: giao\: diem\:cua \: XT\:va \:YZ, \:theo \: dly\: \:Tales \: co\:: \:\frac{IT}{IC}= \frac{MT}{MB}=\frac{ZT}{AB}= \frac{ZT}{CD}= \frac{TJ}{CO}\(do\Delta JTZ\: va\: \Delta OCD\:la \:2\Delta \:vuong \:can \: ): \: \: \: \: \: \; \; \; \;Mat\neq TJ \;song \; song\;voi \;CO\rightarrow T,J,O \; thang\; hang\;\rightarrow XT,YZ,OI dong \; qui\; \; \; \; \; \; \;Goi \; H\;la \;giao \; diem\; EM\;voi \; AB\;(E\: la\:giao \:cua \:dt \:qua \: M\: vuong\:goc \: voi\:CD \:va \:duong \:tron ),ta \;co \;\frac{IJ}{IO}=\frac{IT}{IC}=\frac{MT}{MB}=\frac{MI}{MH}=\frac{IK}{IE}(de\:y \:rang \: K\:va \: M\:dx\:nhau \:qua \:CD \: \: ) \;.Vay \; JK\;song \;song \;voi\:OE \:\rightarrow \frac{JK}{OE} = \frac{IJ}{IO}= \frac{JT}{OC}\:,ma \;OE=OC\rightarrow DPCM$