Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


dotandung

Đăng ký: 08-07-2013
Offline Đăng nhập: 24-12-2014 - 16:32
-----

Bài viết của tôi gửi

Trong chủ đề: ĐỀ THI CHUYÊN TOÁN TRẦN PHÚ HẢI PHÒNG NĂM HỌC 2014-2015

25-06-2014 - 23:21

hai bác tên gì ở trường nào thế , em còn phần b bài5

Trong chủ đề: ĐỀ THI CHUYÊN TOÁN TRẦN PHÚ HẢI PHÒNG NĂM HỌC 2014-2015

25-06-2014 - 21:07

 

SỞ GIÁO DỤC VÀ ĐÀO TẠO HẢI PHÒNG 

KỲ THI TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN TRẦN PHÚ 

Năm học 2014 - 2015 

ĐỀ THI MÔN TOÁN CHUYÊN 

Thời gian làm bài 150 phút 

 

Bài 1. (2,0 điểm )

a) Cho $\large A=\frac{x+1}{\sqrt{x}}-(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}})$.Tìm x sao cho$A=\frac{1}{2}$

b) Tìm số nguyên dương m để phương trình $(m+1)x^2-5mx+4m=0$ có hai nghiệm phân biệt $x_{1},x_{2}$ thỏa mãn $\large A=x_{1}+x_{2}+\frac{1}{2}x_{1}x_{2}$ là một số nguyên.

 

Bài 2. (2.0 điểm )

a) Giải phương trình $\sqrt{10-x}+\sqrt{3+x}+2\sqrt{30+7x-x^2}$

b) Giải hệ phương trình $\left\{\begin{matrix} x-\frac{1}{x}=y-\frac{1}{y} & & \\ y=\sqrt{3x-2}& & \end{matrix}\right.$

Bài 3. ( 3,0 điểm )
Cho tam giác $ABC$ vuông tại $A$. (O) là đường tròn đường kính $AB$ ((O) nằm trong nửa mặt phẳng chứa điểm $C$ có bờ là đường thẳng $AB$ ). Một đường thẳng đi qua $C$ cắt nửa đường tròn tại hai điểm $D, E$ ($D$ nằm giữa $C, E$ ) sao cho $\widehat{ECA}<90$. Qua $D$ dựng đường thằng vuông góc với $CE$, cắt $AC$ tại F. Hạ $CK$ vuông góc với $EF$, $EH$ vuông góc với $AC$. Đường tròn ngoại tiếp tam giác $EDK$ cắt $AD$ tại $I$. Hai đường thẳng $AC, $KI$  cắt nhau tại $M$.
a) Chứng minh rằng bốn điểm $A, K, E, M$ cùng thuộc một đường tròn.
b) Chứng minh rằng $CA^2=CF.CH$
c) Chứng minh rằng đường tròn ngoại tiếp tam giác $EDM$ tiếp xúc với $AC$.
 
Bài 4. (1.0 điểm )
Cho ba số thực $x,y,z$ thỏa mãn $x^2+y^2+z^2=1$ Chứng minh rằng : $\sqrt{x^2+y^2.z^2}+\sqrt{y^2+z^2.x^2}+\sqrt{z^2+x^2.y^2}\geq xy+yz+zx+1$
 
Bài 5. (2,0 điểm )
a) Cho hai số tự nhiên $a,b$ thỏa mãn $13(a^2+b^2)+2014ab$ chia hết cho $15^2$. Chứng minh rằng $ab$ cũng chia hết cho $15^2$.
b) Giả sử $A=\left \{a_{1};a_{2};...;a_{2014}\right.\left.  \right \}(a_{1}<a_{2}<...<a_{2014})$ là một tập con của tập $\left \{ 1;2;...2014\right.\left. \right \}$ thỏa mãn tính chất $a,b\epsilon A$ tùy ý ($a,b$ có thể bằng nhau ), nếu $a,b\leq 2014$ thì $a+b$ cũng là một phần tử của tập $A$.
Đặt $P=\frac{a_{1}+a_{2}+...a_{30}}{30}$ hỏi P có thể đạt giá trị nhỏ nhất bằng bao nhiêu

 

sai đề câu 5 rồi kìa má. a+b<= 2014 mà


Trong chủ đề: Topic về Bất đẳng thức, cực trị THCS

23-02-2014 - 15:39

Cho $x;y;z\geq 0$$thỏa$$x+y+z= 3$$Tìm min của$$\sum \sqrt{x^{2}+xy+y^{2}}$


Trong chủ đề: $\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AO}$

16-02-2014 - 11:13

Sai đề rồi bạn ơi

sai cái gì


Trong chủ đề: $\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AO}$

14-02-2014 - 18:19

File gửi kèm  HINH5.CPOY.png   21.69K   98 Số lần tải Cho $\Delta$$AED$, B,C thuộc AD,AE . BE cắt CD ở F.G,H,I lần lượt là trung điểm của AF,BC,DE. Chứng minh $G,H,I$ thẳng hàng