Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


stronger steps 99

Đăng ký: 22-07-2013
Offline Đăng nhập: 31-01-2015 - 20:23
****-

Bài viết của tôi gửi

Trong chủ đề: Tìm $x,y,z \in N$ thỏa mãn $\sqrt{x+2...

16-11-2014 - 10:52

$\leftrightarrow x+2\sqrt{3}=y+z+2\sqrt{yz}\rightarrow yz=3$

Xét các TH là ra. :icon6:


Trong chủ đề: Chứng minh $A,E,L$ thẳng hàng

24-05-2014 - 21:43

 

Cho tam giác $ABC$ nội tiếp $(O)$ . Kẻ $EF || BC$ và $EF$ nằm trên cung $BC$ không có $A$ sao cho $AE$ nằm giữa $AB$ và $AF$ . Gọi $H$ là trực tam giác $ABC$ . Kéo dài $FH$ cắt $(O)$ ở $G$ . Gọi $L$ là tam đường tròn ngoại tiếp tam giác $AGH$ . 
 
b) Giả sử $(L)$ cắt $AB,AC$ ở $N,M$ . Chứng minh $MN$ vuông góc với $AF$
:icon6:

 

Gọi BP là đường cao của $\Delta ABC\rightarrow \widehat{PHM}+\widehat{HPM}=90^{\circ}\rightarrow \widehat{PHM}+\widehat{HGA}=90^{\circ}$ MÀ THEO PHẦN A TA CÓ:$\widehat{HAK}+\widehat{AGH}=90^{\circ}$$\rightarrow \widehat{MHP}=\widehat{HAK}$

Do EF song song với BC nên cung BF =cung CE$\rightarrow$$ \widehat{BAF}= \widehat{KAC}$

$\fn_cm \rightarrow \widehat{BAF}+\widehat{ANM}=\widehat{KAC}+\widehat{AHM}=\widehat{HAM}+\widehat{AHM}=90^{\circ}\rightarrow $ĐPCM


Trong chủ đề: Chứng minh $A,E,L$ thẳng hàng

24-05-2014 - 21:18

 

Cho tam giác $ABC$ nội tiếp $(O)$ . Kẻ $EF || BC$ và $EF$ nằm trên cung $BC$ không có $A$ sao cho $AE$ nằm giữa $AB$ và $AF$ . Gọi $H$ là trực tam giác $ABC$ . Kéo dài $FH$ cắt $(O)$ ở $G$ . Gọi $L$ là tam đường tròn ngoại tiếp tam giác $AGH$ . 
a) Chứng minh $A,L,E$ thẳng hàng .

 

Gọi đường trung trực của AG $\cap$ AE tại K.$\rightarrow \Delta KAG$ cân tại K$\rightarrow 2\widehat{GAK}+\widehat{AKG}=90^{\circ}$(1)

Do AH vuông góc với BC nên AH vuông góc với EF

$\rightarrow \widehat{FEA}+\widehat{HAE}=90^{\circ}\rightarrow \widehat{HAE}+\widehat{AGH}=90^{\circ}\rightarrow \widehat{KAE}+\widehat{AGH}=90^{\circ}$

Xét $\Delta$AGH có: $\widehat{GAK}+\widehat{GHA}=90^{\circ}$ kết hợp với (1) $\rightarrow \widehat{GKA}=2\widehat{GHA}$

TỪ ĐÓ TA CÓ ĐPCM


Trong chủ đề: Chứng minh rằng tồn tại hai số $a_{i};a_{j}...

21-05-2014 - 22:21

Cho n>1 và n+2 các số nguyên dương:

$1\leq a_{1}< a_{2}< a_{3}< ...< a_{n+2}\leq 3n$

Chứng minh rằng tồn tại hai số $a_{i};a_{j}$  thỏa mãn:  $n< a_{i}-a_{j}< 2n$

Xét 3 tập hợp:A{1,2,...,n} ; B{n+1,n+2,...,2n} ;C{2n+1,2n+2,...,3n}

Đặt k=3n-$a_{n+2}$ $(0\leq k\leq 2n-2)(do   a_{n+2}\geq n+2)$

Xét dãy (*) sau:$b_{1}=k+a_{1},b_{2}=k+a_{2},...,b_{n+2}=k+a_{n+2}$

$\rightarrow b_{n+2}=3n$

  ~O) Nếu tồn tại trong dãy (*) 1 số $b_{i}$ mà $n\leq b_{i}\leq 2n$

$\rightarrow n\leq k+a_{i}\leq 2n\rightarrow n\leq 3n-a_{n+2}+a_{i}\leq 2n\rightarrow 2n\geq a_{n+2}-a_{i}\geq n$(đpcm)

  ~O) Nếu không tồn tại trong dãy (*) 1 số $b_{i}$ mà $n\leq b_{i}\leq 2n$

Xét các cặp số sau : (1,2n);(2,2n+1);...(n,3n-1) có hiệu của mỗi cặp là 2n-1

Do tập A và C không có quá n phần tử nên có không quá n số $b_{i}$$\epsilon$ tập A và có không quá n số $b_{j}$$\epsilon$ tập C mà trong dãy (*) có n+1 số (trừ $b_{n+2}=3n$) nên tồn tại ít nhất 1 cặp như trên.

Từ đó suy ra đpcm :icon6:


Trong chủ đề: 1. Cho a,b > 0 thỏa mãn: $ab+1\leq b$ .Tìm Min P=...

12-05-2014 - 21:49

 Bài 2.$a^{2}+b^{2}+c^{2}=9-2(ab+bc+ca)$ biến đổi tương đương ta cần cm:$2(ab+ac+bc)+\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\geq 9 (1)$

$\left ( ab+bc+ca \right )^{2}\geq 3abc(a+b+c)=9abc\rightarrow ab+bc+ca\geq 3\sqrt{abc}$

(1)$\leftrightarrow 3\sqrt{abc}+3\sqrt{abc}+\frac{3}{abc} \geq 9$ (điều này luôn đúng )