Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


dkhanhht

Đăng ký: 08-09-2013
Offline Đăng nhập: 01-08-2015 - 22:56
-----

Bài viết của tôi gửi

Trong chủ đề: ĐỀ THI OLYMPIC CHUYÊN KHOA HỌC TỰ NHIÊN NĂM 2015

30-07-2015 - 22:58

Bài số học năm nay khá nhẹ nhàng:
Bài 1: (vắn tắt) $3^p+4^p=x^2 \rightarrow 3^p=(x-2^p)(x+2^p) \rightarrow x-2^p=3^m,x+2^p=3^n \rightarrow 2^{p+1}=3^n-3^m \rightarrow m=0,n=p$ (xét mod(3))
Suy ra ngay được $2^{p+1}=3^p-1$ nếu $p>3$ dùng Fermat bé suy ra ngay vô lý, còn $p\le 3$ thì $p=2$ thỏa mãn

Bài 3: Quy ước 1x3 là quân nằm ngang và 3x1 nằm dọc
Chia bàn cờ ra thành $671$ cụm 3x3 và một cụm 3x2, gọi các cụm này là $C_1,.,C_{671}$, riêng cụm 3x2 không quan tâm, ta khẳng định bạn $A$ thắng như sau: đầu tiên $A$ đặt quân 1x3 vào $C_1$ (có thể nằm ở hàng trên cùng, giữa hoặc cuối của $C_1$ không quan trọng vì sau khi đặt vào thì $B$ ko thể đặt quân 3x1 nào vào cụm đó nữa) sau đó do bạn $B$ chỉ đặt 3x1 (tức quân nằm dọc) giả sử quân đó thuộc $C_i$ nào đó thì $A$ chỉ cần không đặt quân 1x3 bị chèn vào $C_i$ đó, mà cụ thể $A$ đặt 1x3 vào một $C_j$ khác với $j$ khác $i$, khi đó ta có ngay được $A$ sẽ luôn chiếm giữ được ít nhất $\dfrac{671+1}{2}=336$ cụm 3x3 trong khi $B$ chỉ chiếm giữ được tối đa $335$ cụm 3x3 (do A đi trước), như vậy việc còn lại là hoàn thành các cụm 3x3 thì $A$ có thể hoàn thành với ít nhất $336x3=1008$ quân 1x3 trong khi $B$ chỉ hoàn thành tối đa $2015-1008=1007$ quân 3x1 (cho dù $B$ chiếm giữ cụm 3x2 thừa ra thì vẫn chỉ thu được tối đa 1007 quaan3x1) tức là $A$ thắng (vì đến lúc B sẽ không đặt được nữa trước khi $A$ không đặt được !)

P/S qua cách giải này ta có thể thấy nếu bàn cờ 3xn với $n=6k+t$ với $t$ lẻ thì $A$ sẽ thắng


Mình nghĩ phải là t bằng 3, 4, 5, 6 An thắng chứ.

Trong chủ đề: HÀM LỒI, LÕM. HÀM BÁN LỒI, BÁN LÕM VÀ NGUYÊN LÝ BIÊN

19-07-2015 - 19:52

 Định lý 3: Cho $(x_n)$ là dãy các số thực thỏa:

               i) $(x_n)$ là dãy không giảm.

               ii) $x_n\in\mathbb{R}$

               iii) $x_1+x_2+...+x_n=k=\text{const}$

               iv) $f$ là hàm trên $[\alpha ; \beta ]$ thỏa $f$ lồi trên $(-\infty; \gamma ]$ và lõm trên$[\gamma ; +\infty )$.

Đặt $F=f(x_1)+f(x_2)+...+f(x_n)$. Khi đó: 

       + $\min F\Leftrightarrow x_1\le x_2=x_3=...x_n$

       + $\max F\Leftrightarrow x_1=x_2=...=x_{n-1}\le x_n$

 

 

Chỗ bôi đỏ có phải là $\lim$ không nhi?