Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


kfcchicken98

Đăng ký: 09-09-2013
Offline Đăng nhập: 20-08-2017 - 03:03
-----

#487560 Tìm GTLN của $P=\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+...

Gửi bởi kfcchicken98 trong 18-03-2014 - 12:53

Cho mình hỏi tại sao tổng cuối lại bằng 1/2 vậy?

biến đổi đẳng thức thôi

$\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}=\frac{bc}{b+bc+1}+\frac{1}{bc+b+1}+\frac{ab}{a+1+ab}=\frac{bc}{bc+b+1}+\frac{1}{bc+b+1}+\frac{b}{1+bc+b}=1$




#487559 CMR: $\sum \frac{a^{2}}{b}\...

Gửi bởi kfcchicken98 trong 18-03-2014 - 12:46

$\sum \frac{a^{2}}{b}-2a+b=\sum \frac{(a-b)^{2}}{b}\geq \frac{(\left | a-b \right |+\left | b-c \right |+\left | c-a \right |)^{2}}{a+b+c}\geq \frac{(\left | a-c \right |+\left | c-a \right |)^{2}}{a+b+c}=\frac{4\left | a-c \right |^{2}}{a+b+c}$




#486733 \lim_{x\rightarrow 2}\left ( x-2 \right )cos...

Gửi bởi kfcchicken98 trong 14-03-2014 - 06:19

Bạn nói rõ hơn được không ?

cái đó là dùng L'hospital. Nếu ko biết L'hospital thì có thể giải như sau

$\lim_{x\rightarrow 0}\frac{\ln (\cos 3x)}{\ln (\cos 5x)}=\lim_{x\rightarrow 0}\frac{\ln (1+\cos 3x-1)}{\cos 3x-1}\frac{(\cos 5x-1)}{\ln (1+\cos 5x-1)}\frac{\cos 3x-1}{\cos 5x-1} =\lim_{x\rightarrow 0}\frac{\cos 3x-1}{\cos 5x-1}=\lim_{x\rightarrow 0}\frac{1-2\sin ^{2}\frac{3x}{2}-1}{1-2\sin ^{2}\frac{5x}{2}-1}=\lim_{x\rightarrow 0}\frac{\sin ^{2}\frac{3x}{2}}{\frac{9x^{2}}{4}}\frac{\frac{25x^{2}}{4}}{\sin ^{2}\frac{5x}{2}}\frac{\frac{9x^{2}}{4}}{\frac{25x^{2}}{4}}=\frac{9}{25}$




#486013 $\frac{x}{1+x^{3}}+\frac{y...

Gửi bởi kfcchicken98 trong 06-03-2014 - 09:36

bđt tương đương $\frac{x^{4}}{x^{3}+1}+\frac{y^{4}}{y^{3}+1}+\frac{z^{4}}{z^{3}+1}\geq \frac{1}{28}$

giả sử $x\geq y\geq z$

có $\frac{x^{4}}{x^{3}+1}+\frac{y^{4}}{y^{3}+1}+\frac{z^{4}}{z^{3}+1}\geq \frac{1}{3}(\frac{x^{2}}{x+1}+\frac{y^{2}}{y+1}+\frac{z^{2}}{z+1})(\frac{x^{2}}{x^{2}-x+1}+\frac{y^{2}}{y^{2}-y+1}+\frac{z^{2}}{z^{2}-z+1})\geq \frac{1}{3}\frac{1}{4}(\sum \frac{2x^{2}}{4(x^{2}+y^{2}+z^{2})+y^{2}+z^{2}})\geq \frac{1}{12}(\frac{2(x^{2}+y^{2}+z^{2})^{2}}{4(x^{4}+y^{4}+z^{4})+10(x^{2}y^{2}+y^{2}z^{2}+x^{2}z^{2})})\geq \frac{1}{12}(\frac{2(x^{2}+y^{2}+z^{2})^{2}}{4(x^{2}+y^{2}+z^{2})^{2}+\frac{2(x^{2}+y^{2}+z^{2})^{2}}{3}})=\frac{1}{12}\frac{6}{14}=\frac{1}{28}$

đpcm




#485757 Cho $a,b,c>0$ sao cho abc=1. Chứng minh rằng: $\sum...

Gửi bởi kfcchicken98 trong 04-03-2014 - 09:54

bài toán này đã được đăng trên THTT số tháng 10 năm 2012, bạn không được đăng các bài trên THTT




#484267 $\frac{1}{4-ab}+\frac{1}{4-...

Gửi bởi kfcchicken98 trong 23-02-2014 - 04:47

bài toán này thiên về kĩ thuật hơn là ý tưởng

quy đồng mẫu số 2 biểu thức, thu được $49-8(ab+bc+ca)+(a+b+c)abc\leq 64-16(ab+bc+ca)+4(a+b+c)abc-a^{2}b^{2}c^{2}$

tương đương $16+3(a+b+c)abc\geq a^{2}b^{2}c^{2}+8(ab+bc+ca)$

theo Schur, có $(a^{3}+b^{3}+c^{3}+3abc)(a+b+c)\geq (a+b+c)(ab(a+b)+bc(b+c)+ca(c+a))$

tương đương $3+3abc(a+b+c)\geq (ab+bc)^{2}+(bc+ca)^{2}+ca(c+a)^{2}$15+3abc(a+b+c)\geq 8(ab+bc+ca)$\geq 8(ab+bc+ca)-12$

suy ra $15+3abc(a+b+c)\geq 8(ab+bc+ca)$

từ giả thiết, dễ dàng suy ra $a^{2}b^{2}c^{2}\leq 1$

suy ra $16+3abc(a+b+c)\geq 8(ab+bc+ca)+1\geq 8(ab+bc+ca)+a^{2}b^{2}c^{2}$ đpcm 




#484069 Chứng minh bất đẳngg thức

Gửi bởi kfcchicken98 trong 19-02-2014 - 23:10

sử dụng $\sqrt{a^{2}+ab+b^{2}}\geq \sqrt{3}\frac{a+b}{2}$




#483791 Cho 3 số dương a,b,c thỏa: $\sqrt{a}+\sqrt{b...

Gửi bởi kfcchicken98 trong 18-02-2014 - 07:01

$\frac{a}{\sqrt{a}+b+c}+\frac{b}{\sqrt{b}+a+c}+\frac{c}{\sqrt{c}+a+b}\geq \frac{a}{\sqrt{3(b+c+1)}}+\frac{b}{\sqrt{3(c+a+1)}}+\frac{c}{\sqrt{3(a+b+1)}}\geq \frac{(a+b+c)^{2}}{\sqrt{3}(\sqrt{(a+b+c)(2ab+2bc+2ca+a+b+c)})}\geq \frac{(a+b+c)^{2}}{\sqrt{3}\sqrt{(a+b+c)\frac{2}{3}(a+b+c)^{2}+\frac{(a+b+c)^{2}}{3}}}=\frac{(a+b+c)^{2}}{\sqrt{3}\sqrt{(a+b+c)}(a+b+c)}=\frac{a+b+c}{\sqrt{3(a+b+c)}}=\frac{\sqrt{a+b+c}}{\sqrt{3}}\geq 1$




#483788 \lim_{x\rightarrow 2}\left ( x-2 \right )cos...

Gửi bởi kfcchicken98 trong 18-02-2014 - 06:22

4 $\lim_{x\rightarrow 0}\frac{\ln (\cos 3x)}{\ln (\cos 5x)}=\lim_{x\rightarrow 0}\frac{\cos 5x}{\cos 3x}\frac{3\sin 3x}{5\sin 5x}=\lim_{x\rightarrow 0}\frac{\cos 5x}{\cos 3x}\frac{9\cos 3x}{25\cos 5x}=\frac{9}{25}$




#483427 Đề thi thử vào lớp 10 chuyên toán Hà Nộị - Amsterdam Chuyên Toán Vòng 2 Năm h...

Gửi bởi kfcchicken98 trong 16-02-2014 - 12:54

bài 5

$P=\frac{\sqrt{x}}{1+\sqrt{y}}+\frac{\sqrt{y}}{2}+\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{1+\sqrt{x}}=\frac{x}{\sqrt{x}+\sqrt{xy}}+\frac{y}{2\sqrt{y}}+\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{1+\sqrt{x}}\geq \frac{(\sqrt{x}+\sqrt{y}+1+1)^{2}}{3\sqrt{x}+3\sqrt{y}+\sqrt{xy}+1}=\frac{(\sqrt{x}+1)^{2}+(\sqrt{y}+1)^{2}+2\sqrt{xy}+2\sqrt{x}+2\sqrt{y}+2}{3\sqrt{x}+3\sqrt{y}+\sqrt{xy}+1}\geq \frac{6\sqrt{x}+6\sqrt{y}+2\sqrt{xy}+2}{3\sqrt{x}+3\sqrt{y}+\sqrt{xy}+1}=2$




#483176 Tìm $\lim \frac{a_{n}}{\sqrt...

Gửi bởi kfcchicken98 trong 14-02-2014 - 23:43



Cho dãy số {an} được xác định bởi

$a_{1} = 1, a_{n+1} = a_{n} + \frac{1}{a_{n}} (n \geq 1)$

Tìm $\lim \frac{a_{n}}{\sqrt{2n}}$ và $\lim \frac{a_{1} + ... + a_{n}}{n\sqrt{n}}$

$\lim_{n\rightarrow \infty }\frac{a_{n}}{\sqrt{2n}}=\lim_{n\rightarrow \infty }\frac{a_{n+1}-a_{n}}{\sqrt{2n+2}-\sqrt{2n}}=\lim_{n\rightarrow \infty }\frac{\sqrt{2n+2}+\sqrt{2n}}{2a_{n}}=\lim_{n\rightarrow \infty }\frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{2}a_{n}}=\lim_{n\rightarrow \infty }\frac{2\sqrt{n}}{\sqrt{2}a_{n}}=\lim_{n\rightarrow \infty }\frac{\sqrt{2n}}{a_{n}}$

do lim a= lim $\frac{1}{a}$, suy ra lim a =1 

 

$\lim_{n\rightarrow \infty }\frac{\sum a_{n}}{n\sqrt{n}}=\lim_{n\rightarrow \infty }\frac{a_{n+1}}{(n+1)\sqrt{n+1}-n\sqrt{n}}=\lim_{n\rightarrow \infty }\frac{a_{n+1}\left [ (n+1)\sqrt{n+1}+n\sqrt{n} \right ]}{3n(n+1)+1}=\lim_{n\rightarrow \infty }\frac{a_{n+1}2n\sqrt{n}}{3n(n+1)}=\lim_{n\rightarrow \infty }\frac{a_{n+1}}{\sqrt{2n+2}}\frac{\sqrt{2n+2}2\sqrt{n}}{3(n+1)}=\lim_{n\rightarrow \infty }\frac{2}{3}\sqrt{2}\frac{\sqrt{n}}{\sqrt{n+1}}=\frac{2\sqrt{2}}{3}$




#482490 $a^2+b^2+c^2+a\sqrt{bc}+b\sqrt{ac}+c\...

Gửi bởi kfcchicken98 trong 11-02-2014 - 00:01

Mình nghĩ ý của bạn kaito kuroba là thế này

 giả sử bđt cần chứng minh đúng ta có

$\sum a^{2}+\sum a\sqrt{bc}\geq 2\sum ab\Rightarrow \sum a^{2}\geq 2\sum ab-\sum a\sqrt{bc}(1)$

$\sum a\sqrt{bc}\leq \sum ab$

nên từ (1) suy ra

$\sum  a^{2}\geq \sum ab$ luôn đúng

nếu giả sử bdt đúng thì cần CM làm gì nữa

với lại từ a^2+b^2+c^2 > ab+bc+ca thì cũng ko thể suy ra a^2+b^2+c^2+a căn bc + b căn ca + c căn ab > 2ab+2bc+2ca được do ab+bc+ca > a căn bc +b căn ca +c căn ab 




#482094 $\sum \frac{a}{b^2+c^2+a}\leq 1$

Gửi bởi kfcchicken98 trong 09-02-2014 - 01:45

Cho các số thực dương a,b,c thỏa mãn $abc=1$.Chứng minh rằng:

$\frac{a}{b^2+c^2+a}+\frac{b}{a^+c^2+b}+\frac{c}{a^2+b^2+c}\leq 1$

cách khác

đặt $a=\frac{1}{x}, b=\frac{1}{y}, c=\frac{1}{c}$

bđt tương đương $\frac{1}{xz^{2}+xy^{2}+y^{2}z^{2}}+\frac{1}{yz^{2}+yx^{2}+x^{2}z^{2}}+\frac{1}{y^{2}z+x^{2}z+x^{2}y^{2}}\leq 1$

có $\sum \frac{1}{xz^{2}+xy^{2}+y^{2}z^{2}}\leq \sum \frac{1}{2+y^{2}z^{2}}$

giờ cần cm $\sum \frac{1}{2+y^{2}z^{2}}\leq 1$

tương đương $\sum \frac{y^{2}z^{2}}{2+2y^{2}z^{2}}\geq 1$

có $\sum \frac{y^{2}z^{2}}{2+2y^{2}z^{2}}\geq \frac{(xy+yz+xz)^{2}}{6+\sum x^{2}y^{2}}\geq \frac{(xy+yz+xz)^{2}}{\sum x^{2}y^{2}+2xyz(x+y+z)}=1$

đpcm




#481936 $x_n=\frac{1+\sqrt{2}+\sqrt[3]{3...

Gửi bởi kfcchicken98 trong 08-02-2014 - 14:28

hoặc có thể sử dụng tốc độ của phương trình 

do $\ln x< x< x^{n}< n^{x}< x^{x}$

nên $\lim_{x\rightarrow \infty }\frac{\ln x}{x}=0$




#481926 $x_n=\frac{1+\sqrt{2}+\sqrt[3]{3...

Gửi bởi kfcchicken98 trong 08-02-2014 - 13:49

Đã bảo ngoài L'Hopitale mà. Tìm cách kẹp . Chắc dễ ( khả năng là chơi Cauchy) .

$\lim_{a\rightarrow \infty }a^{\frac{1}{a}}=\lim_{a\rightarrow \infty }e^{\frac{\ln a}{a}}=e^{\lim_{a\rightarrow \infty }\frac{\ln a}{a}}=e^{\lim_{a\rightarrow \infty }\frac{\ln (a+1)-\ln a}{a+1-a}}=e^{\lim_{a\rightarrow \infty }\ln \frac{a+1}{a}}=e^{0}=1$

thay a=n+1