Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Tuananh2107

Đăng ký: 27-09-2013
Offline Đăng nhập: 31-12-2013 - 16:21
***--

Bài viết của tôi gửi

Trong chủ đề: $A= \sin^{4}x + \cos ^{4}x$

02-10-2013 - 20:57

Lời giải:

Ta luôn có $sin^2{x}+cos^2{x}=1$

$tan{x}.cot{x}=1$

1)
Áp dụng bất đẳng thức C-S,ta có:
$sin^4{x}+cos^4{x} \ge \dfrac{(sin^2{x}+cos^2{x})^2}{2}=\dfrac{1}{2}$

Vậy GTNN của $sin^4{x}+cos^4{x}$ là $1/2$ tại $x=45$

2)

Áp dụng bất đẳng thức AM-GM,ta có:

$cot^2{x}+tan^2{x} \ge 2cot{x}.tan{x}=2$

Vậy GTNN của $cot^2{x}+tan^2{x}$ là 2 tại $x=45$

3)

Do $0<sin{x};cos{x} <1$ với $0 \le x \le 90$

$\Longrightarrow sin^{2007}B < sin^2{B}=1-cos^2{B}$

$\Longrightarrow sin^{2007}B+ cosB < 1-cos^2{B}+cos{B} $

Mặt khác $1-cos^2{B}+cos{B} < \dfrac{5}{4}$

Bạn có thể chứng minh bằng cách đưa về HĐT

4)

Ta có: $sin^{2007}B+cos{2008}B < sin^2{B}+cos^2{B}=1$

bất đẳng thức C-S

 cho tớ cái công thức của bđt này dc ko?


Trong chủ đề: Cho $0^{\circ}< 90^{\circ}$....

02-10-2013 - 19:53

ukm nhưng mà bài 2 thấy khó quá, cậu có cách giải ko?