Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hoang Thi Thao Hien

Đăng ký: 21-10-2013
Offline Đăng nhập: 15-04-2020 - 12:21
***--

Bài viết của tôi gửi

Trong chủ đề: CMR: $\sqrt[3]{abc}+\sqrt[3]{xyz}...

29-06-2014 - 11:07

Cho $x,y,z,a,b,c>0$. CMR:

$\sqrt[3]{abc}+\sqrt[3]{xyz}\leq \sqrt[3]{(a+x)(b+y)(c+z)$

$\sqrt[3]{abc}+\sqrt[3]{xyz}\leq \sqrt[3]{(a+x)(b+y)(c+z)} \Leftrightarrow \sqrt[3]{\frac{a}{x}.\frac{b}{y}.\frac{c}{z}} +1 \leq \sqrt[3]{(\frac{a}{x}+1)(\frac{b}{y}+1)(\frac{c}{z}+1)}$

Đặt: $m= \frac{a}{x}$, $n= \frac{b}{y}$, $p=\frac{c}{z}$ thì BĐT trở thành:

$\sqrt[3]{mnp}+1\leq \sqrt[3]{(m+1)(n+1)(p+1)}$

Biến đổi tương đương ta có: $3\sqrt[3]{mnp}+3\sqrt[3]{m^2n^2p^2}\leq m+n+p+m^2+n^2+p^2$. đúng theo BĐT Co-si cho 3 số dương


Trong chủ đề: Giải phương trình hệ phương trình bằng phương pháp sử dụng bất đẳng thức.

29-06-2014 - 10:43

Bài 26: $\left\{\begin{matrix} x+y+xy=a^2+2a(1) & & \\ x^4+y^4=2a^4(2) & & \end{matrix}\right.$ ($a\ge 0$)

Từ (2), ta có:  $2a^4=x^4+y^4\geq \frac{(x^2+y^2)^2}{2}\geq \frac{(x+y)^4}{8}$ $\Leftrightarrow x+y\leq 2a$.

Thay vào (1) thì: $a^2+2a=x+y+xy\leq 2a+xy$ $\Leftrightarrow a^2 \leq xy \leq \frac{x^2+y^2}{2}$ $\Leftrightarrow 4a^4 \leq (x^2+y^2)^2 \leq 2(x^4+y^4)$ $\Leftrightarrow 2a^4 \leq x^4+y^4$. 

Dấu bằng xảy ra khi $x=y=a$


Trong chủ đề: $\frac{x_{1}}{2-x_{1}}+\frac{x_{2}}{2-x_{2}}+...+\fra...

28-06-2014 - 23:41

Cho n số dương $x_{1},x_{2},x_{3},...,x_{n}$ có tổng bằng 1.

CMR: $\frac{x_{1}}{2-x_{1}}+\frac{x_{2}}{2-x_{2}}+...+\frac{x_{n}}{2-x_{n}}\geq \frac{n}{2n-1}$

Áp dụng Cauchy-Swartd:  $\frac{x_{1}}{2-x_{1}}+\frac{x_{2}}{2-x_{2}}+...+\frac{x_{n}}{2-x_{n}}$

=$\sum \frac{x_{1}^2}{2x_{1}-x_{1}^{2}}\geq \frac{(\sum x_{1})^2}{2\sum x_{1}-\sum x_1^2}\geq \frac{1}{2-\frac{1}{n}}=\frac{n}{2n-1}$ (đpcm)


Trong chủ đề: giải pt$\sqrt{x^2+(1-\sqrt{3})x+2} +...

04-04-2014 - 21:16

$$(1)\Leftrightarrow \sqrt{2x^2+(2-2\sqrt{3})x+4} +\sqrt{2x^2+(2+2\sqrt{3})x+4}+\sqrt{2x^2+4x+4}\leq 6$(1)$

 

10014899_1576119775945995_1638357502_n.j

 

$(1)\Leftrightarrow \sqrt{2x^2+(2-2\sqrt{3})x+4} +\sqrt{2x^2+(2+2\sqrt{3})x+4}+\sqrt{2x^2+4x+4}\leq 6$

Lấy $M(x;x), A(0;2); B(\sqrt{3}; -1); C(-\sqrt{3}; -1)$. Khi đó: 

$MA=\sqrt{2x^2+4x+4}, MC=\sqrt{2x^2+(2+2\sqrt{3})x+4}, MB= \sqrt{2x^2+(2-2\sqrt{3})x+4}$

Dễ thấy $\Delta ABC$ đều và O là điểm toricelli trong tam giác (coi qua cái này nếu bạn chưa biết http://t2tnh.forum7.biz/t46-topic). Khi đó: $MA+MB+MC\geq 3OA=3.2=6$. Nhưng theo giả thiết thì $MA+MB+MC\leq 6$ theo gt nên $M\equiv O$

Vậy nghiệm bất phương trình là $x=0$


Trong chủ đề: $\left\{\begin{matrix}4x-y+3\sqrt...

16-03-2014 - 13:06

4.$\left\{\begin{matrix}\dfrac{x^2}{(y+1)^2}+\dfrac{y^2}{(x+1)^2}=\dfrac{1}{2}(1)\\3xy=x+y+1(1)\end{matrix}\right.$

Nhận xét: $(x+1)(y+1)=4xy$

Khi đó, pt(1) $\Leftrightarrow (\frac{x}{y+1}+\frac{y}{x+1})^2-2\frac{xy}{(x+1)(y+1)}=\frac{1}{2}\Leftrightarrow (\frac{x}{y+1}+\frac{y}{x+1})^2=1\Leftrightarrow (\frac{x^2+y^2+x+y}{(x+1)(y+1)})^2=1$

TH1: $\frac{x^2+y^2+x+y}{(x+1)(y+1)}=1$$\Leftrightarrow \frac{x^2+y^2+x+y}{4xy}=1$. Đặt $S=x+y, P=xy$, thì t có hệ pt: $\left\{\begin{matrix} S^2-P+S=4P\\ 3P=S+1 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} S^2+S-5P=0\\ S=3P-1 \end{matrix}\right.$, từ đó ta tìm đc $S, P$ rồi dùng Vi-ét đảo để tìm x, y

TH2: Làm tương tự